
Priority Promotion with Parysian Flair

Massimo Benerecettia, Daniele Dell’Erbab, Fabio Mogaveroa, Sven Scheweb,
Dominik Wojtczakb

aUniversità degli Studi di Napoli Federico II, Naples, Italy
bUniversity of Liverpool, Liverpool, UK

Abstract

We develop an algorithm that combines the advantages of Priority Promotion,
that is one of the leading approaches to solving large parity games in practice, with
the quasi-polynomial time guarantees offered by Parys’ algorithm. Hybridising
these algorithms sounds both natural and difficult, as they both generalise the
classic recursive algorithm in different ways that appear to be irreconcilable:
while the promotion transcends the call structure, the guarantees change on each
level. We show that an interface that respects both is not only effective, but also
efficient.

1. Introduction

Parity games are perfect-information two-player turn-based games of infinite
duration, usually played on finite directed graphs. Their vertices, labelled by
natural numbers, called priorities, are assigned to one of two players, named
Even and Odd (or simply 0 and 1, respectively). A play in the game consists of a
sequence of moves between vertices and it is said to be winning for player 0 (resp.,
1), if the maximal priority encountered infinitely often along the play is even (resp.,
odd). Parity games have many applications in the context of formal verification
and synthesis of systems. Computing winning strategies for these games is linear-
time equivalent to solving the modal µ-calculus model-checking problem [1, 2].
Parity games has been studied in automata theory [3, 4, 5] and can be applied to
solve the complementation problem for alternating automata [6] or the emptiness
of the corresponding nondeterministic tree automata [7]. These automata, in
turn, can be used to solve the satisfiability and model-checking problems for
several expressive logics [8, 9, 10, 11, 12, 13, 14], such as µ-calculus [15, 16]
and ATL* [17, 18]. On the complexity-theoretic side, determining the winner
of a parity game is a problem that lies in NP ∩ co-NP [1], being memoryless
determined [19, 20, 21]. It has even been proved to belong to UP ∩ co-UP [22],
and later to be solvable in quasi-polynomial time [23]. However, determining
whether they belong also to P is still an open challenge.

Research on parity games falls into two categories: on the one hand to develop
fast solvers; on the other hand to determine the complexity of parity games
by finding algorithms with a good worst-case complexity. With its practical

Preprint submitted to Elsevier August 29, 2024



motivation, one of the most efficient approach for solving parity games is currently
the Priority Promotion technique [24, 25, 26, 27, 28], a derivation of the classic
recursive algorithm [29, 30] that follows the iterated fixed-point structure induced
by the parity condition. Like all of practically efficient algorithms, it is an
exponential approach, however, algorithms that are good in practice do not
tend to display their worst-case behaviour, except in carefully designed hostile
examples. This holds in particular for strategy improvement algorithms [31, 32,
33, 34, 35, 36, 37], which were considered candidates for tractable algorithms
until they were shown to be exponential by Friedman’s delicate lower bound
constructions [38, 39, 40] and by [41] for the symmetric approach of [37]. But
while it is easier to design hard classes for recursive [42, 43, 44] and Priority
Promotion algorithms [28], these classes are still not relevant in practice.

One of the most celebrated results in recent years has been the landmark result
of [23], which established that parity games can be solved in quasi-polynomial
time (QP). This was a major step from former deterministic algorithms, which
were (at least) exponential in the number of priorities [29, 2, 45, 46, 30, 47, 34, 35,
48, 27] (nO(c)), or in the square-root of the number of game positions [31, 49, 34]
(approximately nO(

√
n)). The breakthrough of [23] has triggered a new line of

research into QP algorithms, including its refinements [50, 51, 52], the register-
index algorithm [53, 54], the study on the Strahler Number [55], and the bounded
version of the recursive algorithm [56]. Unfortunately, all these quasi-polynomial
algorithms can be derived by the separation approach that also provides a lower
bound for these techniques [57].

Interestingly, Parys’ algorithm [56] and variations thereof [58, 59], which, like
Priority Promotion techniques, adjust the classic recursive algorithm [29, 30], are
relatively fast among the QP algorithms, where [56] has the edge on benchmarks,
while [58] has the edge on theoretical guarantees. On first glance, this seems to
invite synthesising one of these algorithms with Priority Promotion. This upgrade
would combine the best of both worlds: offer QP lower bounds without undue
compromise on efficiency. On second glance, the prospect of this synthesis seems
less promising. Priority Promotion techniques [26, 27, 28, 60, 61, 62] achieve
their advancement over the classic recursive algorithm [30] by globally bypassing
the call structure through temporally increasing the priority of a position. Parys’
approach, on the other hand, locally creates sets with guarantees weakened
(halved) along the recursive call structure, where subgames are split into areas
that contain all 0-dominions with size up to a bound b0 and all 1-dominions
of size up to a bound b1; one of these bounds is halved in each call until the
guarantees are trivial. Prima facie, it seems clear that such guarantees are ill
suited for a promotion across the call structure. We did, however, find that,
when one shifts the view on the essence of a promotion from creating quasi-
dominions to creating regions and promoting them to the lowest level where
they are no longer dominions, this allows for a concurrent treatment of sets
with bounded guarantees (the Parysian flair of our hybrid algorithm) and with
unbounded guarantees (the Priority Promotion core of our algorithm). While
the integration of these seemingly antagonistic concepts is intricate, it provides
an efficient bridge between the behaviour and the data structures of [27] and [56]:

2



the resulting algorithm guarantees a quasi-polynomial running time, and offers
excellent practical behaviour on the benchmarks we have tested it against.

2. Preliminaries

A two-player turn-based arena is a tuple A = ⟨Ps0,Ps1,Mv⟩, with Ps0∩Ps1 =
∅ and Ps≜Ps0 ∪Ps1, such that ⟨Ps,Mv⟩ is a finite directed graph without sinks.
Ps0 (resp., Ps1) is the set of positions of the Even (resp., Odd) and Mv ⊆ Ps×Ps
is a left-total relation describing all possible moves. A path in V ⊆ Ps is a finite
or infinite sequence π ∈ Pth(V) of positions in V compatible with the move
relation, i.e., (πi, πi+1) ∈ Mv, for all i ∈ [0, |π| − 1). A positional strategy for
player α ∈ {0, 1} on V ⊆ Ps is a function σα ∈ Strα(V) ⊆ (V ∩ Psα) → V,
mapping each α-position v in V to position σα(v) compatible with the move
relation, i.e., (v, σα(v)) ∈ Mv. With Strα(V) we denote the set of all α-strategies
on V. When talking about players, we will refer to the opponent player of
α as α. A play in V ⊆ Ps from a position v ∈ V w.r.t. a pair of strategies
(σ0, σ1) ∈ Str0(V)× Str1(V), called ((σ0, σ1), v)-play, is a path π ∈ Pth(V) such
that (π)0 = v and, for all i ∈ [0, |π| − 1), if (π)i ∈ Ps0 then (π)i+1 = σ0((π)i) else
(π)i+1 = σ1((π)i). The play function play : (Str0(V)× Str1(V))×V → Pth(V)
returns, for each position v ∈ V and pair of strategies (σ0, σ1) ∈ Str0(V)×Str1(V),
the maximal ((σ0, σ1), v)-play play((σ0, σ1), v). Given a partial function f : A⇀B,
with dom(f) ⊆ A and rng(f) ⊆ B we denote the domain and the range of f,
respectively.

A parity game is a tuple ⅁ = ⟨A,Pr, pr⟩ ∈ PG, where A is an arena, Pr ⊂ N
is a finite set of priorities, and pr : Ps → Pr is a priority function assigning
a priority to each position. The priority function can be naturally extended
to games and paths as follows: pr(⅁) ≜maxv∈Ps pr(v); for a path π ∈ Pth, we
define pr(π)≜maxi∈[0,|π|) pr((π)i), if π is finite, and pr(π)≜ lim supi∈N pr((π)i),
otherwise. A set of positions V ⊆ Ps is an α-dominion, with α ∈ {0, 1}, if there
exists an α-strategy σα ∈ Strα(V) such that, for all α-strategies σα ∈ Strα(V)
and positions v ∈ V, the induced play π = play((σ0, σ1), v) is infinite and
pr(π) ≡2 α. In other words, σα only induces on V infinite plays whose maximal
priority visited infinitely often has parity α. The winning region for player
α ∈ {0, 1} in game ⅁, denoted by Wnα⅁, is the greatest set of positions that is
also a α-dominion in ⅁. Since parity games are memoryless determined [20],
meaning that from each position one of the two players wins, the two winning
regions of a game ⅁ form a partition of its positions, i.e., Wn0⅁∪Wn1⅁= Ps⅁.

The (maximal) subgame ⅁′ = ⅁\V of ⅁ is the game with set of positions
Ps′ contained in Ps\V and move relation Mv′ equal to the restriction of Mv to
Ps′. The α-predecessor of V, in symbols preα(V)≜ {v ∈ Psα |Mv(v) ∩V ̸= ∅} ∪
{v ∈ Psα |Mv(v) ⊆ V}, collects the positions from which player α can force the
game to reach some position in V with a single move. The α-attractor atrα(V)
generalises the notion of α-predecessor preα(V) ∪V to an arbitrary number of
moves. Thus, it corresponds to the least fix-point of that operator. When
V = atrα(V), player α cannot force any position outside V to enter this set that
is, therefore, called α-maximal. For such a V, the set of positions of the subgame

3



⅁ \V is precisely Ps \V. When the computation of the attractor is restricted to
a given set of positions X, we will use the notation atrα(V,X) which corresponds
to the least fix-point of preα(V) ∩X. Finally, the set escα(V)≜ preα(Ps \V) ∩V,
called the α-escape of V, contains the positions in V from which α can leave V
in one move. Observe that all the operators and sets described above actually
depend on the specific game ⅁ they are applied to. In the rest of the paper, we
shall only add ⅁ as subscript of an operator, e.g. atrα⅁(V), when the game is not
clear from the context.

Outline

We introduce our hybrid algorithm in three steps. In the first step (Section 3),
we introduce a variation of the classic Priority Promotion approach, which serves
as the backbone of our hybrid algorithm in Section 5. We provide a recap of how
Priority Promotion operates and an introduction to its data structure, which
we later extend for our hybrid algorithm. In a nutshell, Priority Promotion
accelerates the classic recursive algorithm by allowing to merge dominions in
subgames that span non-adjacent recursive calls, which is the essence of the
promotion operations. In the subsequent section (Section 4), we outline Parys’
algorithm, which does not seek to identify all dominions on a level, but merely
all small dominions up to given bounds b0 and b1 for the dominions of Player 0
and Player 1, respectively. It truncates the size of the call tree by making all
but one call with half the precision for one of the players. Here, we formulate
the algorithm with a terminology analogous to Priority Promotion, and present
it in a form similar to our hybrid algorithm.

The two concepts of Priority Promotion and truncated tree size through
limited guarantees appear to be unlikely allies: not only does the presence of
Parys’ sets with limited guarantees impede the promotion of dominions, any
attempt to promote sets with bounded guarantees is doomed to fail, when the
bounds are larger (and thus the required guarantees stronger) along the call tree.
In Section 5, we see that, when synthesising the algorithms carefully, sets with
the ‘region guarantees’ from Priority Promotion and with ‘bounded guarantees’
from Parys’ approach can co-exist, so long as they are kept carefully apart and
treated differently.

The resulting algorithm can identify dominions in many places, and these
dominions can be promoted. This promotion can be to a set with ‘region
guarantees’ at a higher level, but it can also be that the correct target is
a set with ‘bounded guarantees’; this works across levels because dominions
have unbounded guarantees. The identification of the right set to promote
to, instead, remains fairly similar to the way such a set is identified in classic
Priority Promotion. While sets with bounded guarantees cannot be promoted
along the data structure (which follows the call tree), they lose parts of their
locality: positions can be promoted into them, and, crucially, they do not prevent
promotions to higher levels. This way, we can keep the Priority Promotion part
(which usually carries the main burden of solving the parity game) and can
play out its practical efficiency in full, while we also retain the quasi-polynomial

4



a/0

b/7

c/1

d/5

e/3

f/6

g/4

h/2

Figure 1: A game and some of its quasi dominions.

complexity from Parys’ algorithm [56], bypassing the known hard cases for
recursive algorithms. For practical considerations, it is still computationally
attractive to grow the bounded sets more slowly: we found that some of the
points where Parys’ algorithm applies a closure of sets with bounded guarantees
are merely for the convenience of the proof. For efficiency, we have restricted
the closure under attractor of these sets to the places where it is necessary for
correctness.

3. The Priority Promotion Approach

The Priority Promotion approaches [24, 25, 26, 27, 28] attack the problem of
solving a parity game ⅁ ∈ PG by iteratively computing, one at a time, a sequence
of α-dominions Dα

0,D
α
1, . . . ⊆ Ps, for some player α ∈ B ≜ {0, 1} (potentially,

for both of them). These are in fact portions of the two winning regions, Wn0
and Wn1, that need to be identified (the original notion of dominion has been
introduced in [63, 49]). The idea here is to start from a weaker notion, called
quasi dominion. Similarly to a dominion, a quasi dominion is a set of positions
over which one of the two players has a strategy defined on that set, whose
induced plays, if infinite, are winning for that player. In contrast to dominions,
it’s worth noting that some of these plays could be finite. This is because the
opponent may have the possibility to escape from those positions towards a
different part of the game, hoping for a better outcome. The approach uses quasi
dominions by composing them until an actual dominion is obtained. The name
of the approach refers to the principle that this composition is computed by
applying the following operation called promotion. Given two quasi dominions
Q1 and Q2, to which some priorities p1 < p2 of the same parity are assigned, Q1

is combined with Q2 by promoting the former to the priority of the latter. As
a result, together they form a bigger quasi dominion Q1 ∪Q2, whose internal
infinite plays are still winning for the same player.

Definition 1 (Quasi Dominion). A set of positions Q ⊆ Ps is a quasi α-
dominion, for some player α ∈ B, if there exists an α-strategy σα ∈ Strα(Q),
called α-witness for Q, such that, for all α-strategies σα ∈ Strα(Q) and positions
v ∈ Q, the induced play π = play((σ0, σ1), v), satisfies pr(π) ≡2 α, if infinite.

5



The usefulness of the above concept, in addition to the property of being
suitably composable, resides in the fact that quasi dominions are closed under
inclusion. Thus, when a subset of an α-quasi dominion is found for which player
α has no strategy that leaves the set, a dominion is identified. Note that here
no constraints are imposed on the finite plays, unlike in the definition given in
the Priority Promotion paper [24], where quasi dominions were not closed under
inclusion. However, an analogous constraint is implicitly imposed on the basic
data structure leveraged by the algorithm and introduced in Definition 4 below.
It is interesting to notice that this version of quasi dominion is similar to the
notion of a snare [36].

Theorem 1 (Induced Dominion). Let α ∈ B be a player, Q ⊆ Ps a quasi
α-dominion, σ ∈ Strα(Q) one of its α-witnesses, and D ⊆ Q a subset such that
σ(v) ∈ D, if v ∈ Psα, and Mv(v) ⊆ D, otherwise, for all positions v ∈ D. Then,
D is an α-dominion.

Example 1. As an example of quasi dominions, consider the game depicted
in Figure 1, where circle-shaped positions belong to Player 0 and square-shaped
ones to Player 1. Clearly, g and h are won by Player 0, while the rest of the
game is won by Player 1. The dashed blue region, containing the four positions
d, f, g, and h, is one of the quasi 0-dominion in the game, where one of its
two possible 0-witnesses is highlighted in blue (the other one being the 0-strategy
where Player 0 moves from h to g). The solid blue subregion is a 0-dominion
induced by the single position g. The dashed red region, containing the remaining
half of the game, is instead a quasi 1-dominion with the 1-witnesses highlighted
in red. Finally, note that this region is also a quasi 0-dominion with 0-witness
mapping position a to b. Indeed, any play compatible with this witness will
eventually exit the region. In general, a set of position is both a quasi 0-dominion
and a quasi 1-dominion if both players can force exiting the set.

The solution algorithms following this approach carry on the search for a
dominion by exploring a finite strict partial order ⟨St, sI ,≺⟩. Its elements, called
states, record information about the quasi dominions computed up to that point.
In the initial state sI , the quasi dominions are initialised to the sets of positions
with the same priority. At each step, a new quasi α-dominion Q, for some player
α ∈ B, is extracted from the current state s and used to compute a successor
state w.r.t. the order ≺, if Q is open, i.e., if it is not an α-dominion. If, on the
other hand, it is closed, then the search is over and Q is added to the portion of
the winning region Wnα computed so far.

We describe here a version of the Priority Promotion algorithm that instan-
tiates the above partial order and serves as a basis for the hybrid approach
presented later in this section. To do so, we shall need some technical notions,
all of which refer to some fixed parity game ⅁ ∈ PG. By Pr⊥ ≜ Pr ∪ {⊥} and
Pr⊤ ≜ Pr ∪ {⊤0,⊤1} we denote the set of priorities in ⅁ extended with the
bottom symbol ⊥ and two top symbols ⊤0 and ⊤1, one for each player. The
symbols ⊥, ⊤0, and ⊤1 are called pseudo priorities. The standard ordering < on
Pr is extended to these additional elements in the natural way: ⊥ is the smallest

6



element, while both ⊤0 and ⊤1 are strictly greater than every other priority; we
do not assume any specific order between the two maximal elements, though, we
consider ⊤0 even and ⊤1 odd.

The first step in the formalisation of the notion of state requires the concept
of priority-lift function, which is at the basis of all the approaches discussed in
this article. Intuitively, it is a partial function from positions to priorities that
over-approximates the priority function of the game.

Definition 2 (Priority-Lift Function). A priority-lift function r ∈ Pf≜Ps⇀Pr⊤
is a partial function such that r(v) ≥ pr(v), for every position v ∈ dom(r).

In the following, we adopt the same notation as in [27]. Given a priority-lift
function r ∈ Pf and a priority p ∈ Pr, we denote with r(∼p), for ∼ ∈ {<,≤
,≥, >}, the function obtained by restricting the domain of r to the positions
v ∈ dom(r) whose priority r(v) satisfies the relation r(v) ∼ p, i.e., r(∼p)≜ r ↾
{v ∈ dom(r) | r(v) ∼ p}, where ↾ is the standard operation of domain restriction.
By ∆α

r ≜ {v ∈ dom(r) | r(v) ≡2 α} we denote the set of positions in r with a
priority congruent to α ∈ B, and with ∆α,p

r ≜ {v ∈ ∆α
r | r(v) ≥ p} its subset with

priorities greater than or equal to p.

Example 2. Consider again the game reported in Figure 1 and the total function
r ≜ {a, c, e 7→ 3; b 7→ 7; d, f, h 7→ 6; g 7→ ⊤0} from positions to priorities. It is
immediate to see that r is a priority-lift function such that ∆0

r and ∆1
r denote the

dashed blue and red regions, respectively. Moreover, ∆0,7
r = {g}, while ∆1,7

r = {b}.

A state encodes information about the quasi dominions computed up to a
certain point of the computation. To this end, we require that all the positions
in a priority-lift function r with priority of parity α ∈ B, i.e., the set ∆α

r , form
a quasi α-dominion. Moreover, the idea is to store all α-dominions already
identified by associating them with the corresponding pseudo priority ⊤α.

Definition 3 (Quasi-Dominion Function). A quasi-dominion function r ∈ Qs ⊆
Pf is a priority-lift function satisfying the following conditions, for every α ∈ B:

1. the set ∆α
r is a quasi α-dominion;

2. the set r−1(⊤α) is an α-dominion.

The notion of quasi-dominion function represents the backbone of the algo-
rithm, being the data structure to which the promotion operation is applied.

Example 3. It is immediate to see that the priority-lift function r reported
in Example 2 is actually a quasi-dominion function. Indeed, as observed in
Example 1, the two sets ∆0

r = {d, f, g, h} and ∆1
r = {a, b, c, e} are quasi dominions

for Player 0 and 1, respectively; in addition, r−1(⊤0) = {g} is a 0-dominion.
Since, by definition, an empty set is always a dominion, r−1(⊤1) = ∅ is a
1-dominion too, which concludes the verification of the properties required by
Definition 3.

7



An important property of dominions is that the extension by means of its
α-attractor, namely the set of positions obtained by applying the α-attractor
operator, of an α-dominion Q is still an α-dominion. This property, however,
is not enjoyed by arbitrary quasi dominions. Indeed, there may even be cases
where the α-attractor of a quasi α-dominion is a α-dominion. Moreover, to
efficiently verify whether a quasi dominion is actually a dominion, an explicit
representation of one of its witnesses is usually required. To overcome these
complications, we consider a well-behaving subclass of quasi dominions that
meets the following requirements:

1. the set esc(Q, σ)≜ {v ∈ Psα ∩Q |σ(v) ̸∈ Q} of α-positions, which leave a
quasi α-dominion Q ⊆ Ps by following one of its α-witnesses σ ∈ Strα(Q),
is a subset of the α-escape positions escα(Q);

2. all these α-escape positions have priorities congruent to α and greater than
the ones of the positions that can be attracted to Q by Player α.

The first requirement states the strategy σ of player α is allowed to leave Q only
if it is forced to do so. This ensures that, in order to verify whether Q is an
α-dominion, it suffices to check for the emptiness of escα(Q) (see [26, Definition
1]). The second one, instead, ensures closure under extension by α-attractor.
Indeed, since only positions with lower priorities than those of escα(Q) can
be attracted by Q, every cycle induced by the attractor strategy inside Q is
necessarily winning for player α (see [24, Proposition 2]). As observed before, a
similar structure, which retains weaker properties, is known as snare [36].

Definition 4 (Region Function). A region function r ∈ Rg ⊆ Qs is a quasi-
dominion function satisfying the following conditions, for every α ∈ B:

1. there exists an α-witness σα ∈ Strα(∆α
r ) for the quasi α-dominion ∆α

r such
that esc(∆α,p

r , σα) ⊆ escα(∆α,p
r ), for all priorities p ∈ rng(r), with p ≡2 α;

2. for all priorities p ∈ rng(r), with p ≡2 α, and positions v ∈ escα(∆α,p
r ), it

holds that p ≤ pr(v) ≡2 α.

Example 4. As observed in Example 3, the priority-lift function r of Example 2
is a quasi-dominion function. We can now show that it is a region function as well.
Indeed, we have (1) ∆1,3

r = {a, b, c, e}, (2) ∆0,6
r = {d, f, g, h}, and (3) ∆1,7

r = {b};
moreover, (1) esc(∆1,3

r , σ1) = esc0(∆1,3
r ) = esc(∆1,7

r , σ1) = esc0(∆1,7
r ) = {b} and

(2) ∅ = esc(∆0,6
r , σ0) ⊆ esc1(∆0,6

r ) = {f}, where σ0 and σ1 are the witnesses of the
two quasi dominions highlighted in Figure 1 in blue and red, respectively; moreover,
pr(b) = 7 ≡2 1, which is greater than or equal to the odd priorities in r, namely
3 and 7. Another example of region function is r = {a 7→0; c 7→1; e 7→3; d, f, h 7→
6; b 7→7; g 7→⊤0}, which is displayed on the left-hand side of Figure 2, and where
∆0,0

r = {a, d, f, g, h}, ∆1,1
r = {b, c, e}, ∆1,3

r = {b, e}, ∆0,6
r = {d, f, g, h}, and

∆1,7
r = {b}. The easy verification of the properties stated in Definitions 2 and 3 is

left to the reader, so we shall only focus on Definition 4. By computing the escape
sets for the five priorities 0, 1, 3, 6, 7 ∈ rng(r), we obtain the following, where σ0

8



and σ1 are two arbitrary witnesses compatible with the partial ones highlighted
in the figure: (1) {a} = esc(∆0,0

r , σ0) ⊆ esc1(∆0,0
r ) = {a, f}; (2) esc(∆1,1

r , σ1) =
esc0(∆1,1

r ) = {b, c}; (3) {b} = esc(∆1,3
r , σ1) ⊆ esc0(∆1,3

r ) = {b, e}; (4) ∅ =
esc(∆0,6

r , σ0) ⊆ esc1(∆0,6
r ) = {f}; (5) esc(∆1,7

r , σ1) = esc0(∆1,7
r ) = {b}. The

first requirement of Definitions 4 is, thus, satisfied. The verification of the
second requirement is immediate, once we observe that (1) pr(a), pr(f) ≥ 0,
(2) pr(b), pr(c), pr(e) ≥ 1, (3) pr(b), pr(e) ≥ 3, (4) pr(f) ≥ 6, and (5) pr(b) ≥ 7.

Note that every set ∆α,p
r , with p ∈ rng(r), is a quasi α-dominion, being a

subset of the quasi α-dominion ∆α
r . Also, it is immediate to see that the priority

function pr of a given parity game ⅁ is always a region function. Indeed, it is
trivially a priority-lift function. Moreover, the positions in ∆α

pr, namely those
with priorities of parity α, form a quasi α-dominion, whose α-witness can be
any strategy that chooses to remain inside the set whenever this is allowed by
the move relation. Thus, it is a quasi-dominion function as well. Finally, since
∆α,p

pr cannot contain positions of parity α and thanks to the way the α-witness is
chosen, it is clear that pr also satisfies the conditions of Definition 4.

At this point, we have the technical tools to introduce the search space that
instantiates the (finite) strict partial order mentioned in the intuitive explanation
of the approach given above. In particular, to account for the current status
of the search of a dominion in a game ⅁, we define a state s as a pair (r, p),
comprising a region function r and a priority p, with the idea that

1. all quasi α-dominions computed so far are contained in ∆α,q
r , for some

priority q strictly greater than p,

2. the current quasi dominion to focus on is contained in r at priority p, and

3. all positions with priorities smaller than or equal to p correspond to the
portion of the game that still has to be processed.

Given a state s = (r, p), we denote by rs ≜ r and ps ≜ p its two components and
by αs ≜ ps mod 2 the parity of the state, i.e., the player associated to the next
quasi dominion to process. Moreover, we set (i) Qs ≜∆αs,ps

rs , (ii) Rs ≜ r−1
s (ps),

(iii) Ls ≜ {v ∈ dom(rs) | rs(v) ≤ ps}, and (iv) Hα
s ≜∆α

rs \ Ls, for all α ∈ B. We
refer to Qs as current quasi dominion and to Ls as the local area, i.e., the set
of unprocessed positions yet to be analysed (see Item 3 above). Both sets also
includes the quasi αs-dominion Rs on which the next step of the search will
focus (see Item 2 above). More precisely, Rs, called αs-region or simply region
whenever the player is clear from the context, is the intersection of Qs and Ls.
As observed above, the two quasi dominions ∆0

rs and ∆1
rs partition the entire

set of positions in the game, thus, H0
s and H1

s represent the portions of these
quasi dominions already processed, to which the region function has assigned a
priority with value strictly greater than ps (see Item 1 above).

The initial state is composed of the priority function pr of the game and
its maximal priority pr(⅁). Finally, we assume that a state s1 is smaller than
another state s2 w.r.t. the partial order relation ≺, if the set of unprocessed
positions in s1 is a subset of those in s2.

9



a/0

b/7

c/1

d/5

e/3

f/6

g/4

h/2

H0
s H1

s

Ls

Qs

⊤0 ⊤1

7

6

3

Rs

g ∅

b

d, f, h

e

a, c

Figure 2: A game and a corresponding state representation.

Definition 5 (Search Space). A search space is a tuple S ≜ ⟨St, sI ,≺⟩, whose
three components are defined as follows:

1. St ⊆ Rg × Pr⊥ is the set states s, with dom(rs) = Ps;

2. sI ≜ (pr, pr(⅁)) is the initial state;

3. s1 ≺ s2 if Ls1 ⊂ Ls2 or Ls1 = Ls2 = ∅ and ps1 = ⊥ < ps2 .

Note that the pseudo priority ⊥ is used to indicate the situation where all
positions have been processed, which corresponds to an empty local area.

Example 5. To exemplify the notion of state just defined, consider the game of
the previous examples, which is reported again on the left-hand side of Figure 2.
Let us consider the state s = (r, 3), where r = {a 7→0; c 7→1; e 7→3; d, f, h 7→6; b 7→
7; g 7→⊤0} is the region function given in Example 4 and αs = 1. The local area
Ls contains the positions a, c, and e. Among these positions, only e is part of
the current region Rs. This position e, together with b, form the current quasi
dominion Qs. The quasi 0-dominion H0

s contains positions d, f, g, and h, while
the quasi 1-dominion H1

s takes the only remaining position with priority greater
than 3, namely b. Position g forms a 0-dominion on its own, represented in
the picture by the solid blue line. Apart from this position, all the other ones
are contained in open quasi dominions, indicated by dashed lines. For example,
the set r−1(6) = {d, f, h} is a quasi 0-dominion. In fact, if Player 1 decides
to remain inside, the adversary wins the play. However, Player 1 also has the
choice to escape from position f by moving to e. A graphical representation of
the state s is given on the right-hand side of Figure 2, where blue-coloured (resp.,
red-coloured) rectangles correspond to the slots of even (resp., odd) priority in
the region function rs, dashed rectangles indicate that the corresponding set of
positions is open and the grey-coloured area denotes the local area Ls.

During the exploration of the search space, a Priority Promotion algorithm
typically traverses several types of states, some of which enjoy important proper-
ties that need to be explicitly identified, as they are exploited during the search

10



Algorithm 1: RPP Solver

function sol(s : StM) : Rg
1 if ps ̸= ⊥ then
2 rs ← rs[atr

αs

⅁s
(Rs) 7→ ps]

3 if s is closed then
4 Promote(s)

else
5 rs ← sol(NextPr(s))
6 if s is closed then
7 Promote(s)

else
8 Maximise(s)

9 rs ← sol(s)

10 return rs

Auxiliary Functions & Procedures

function NextPr(s : StS) : StM

1 q ← max(rng
(
r
(<ps)
s

)
)

2 return (rs, q)

procedure Maximise(s : St)
1 foreach α ∈ B do
2 q ← min(rng(rs↾Hα

s))
3 X← atrα(Hα

s,Ls)
4 rs ← rs[X 7→ q]

5 rs ← rs[v ∈ Ls 7→ pr(v)]

procedure Promote(s : StP)

1 q ← bepαs(Rs, rs)
2 rs ← rs[Rs 7→ q]

for a dominion. In the following we introduce these types of states and explain
what properties they hold. Identify the type of states it is crucial in order to
prove the correctness of the approach.

Given a player α ∈ B, we say that a state s ∈ St is α-maximal if the quasi
α-dominion Hα

s is α-maximal w.r.t. Ls. This means that the set of positions
α-attracted by Hα

s from the local area Ls is empty, namely, atrα(Hα
s,Ls) = Hα

s. If
s is α-maximal for both players α ∈ B, we simply say that it is maximal. It is
useful to denote by StM ⊆ St the corresponding subset of states that are maximal
and by ⅁s ≜ ⅁ \ (H0

s∪ H1
s) = ⅁ \ {v ∈ dom(rs) | rs(v) > ps} the induced subgame.

A maximal state s is strongly maximal if the current region Rs is αs-maximal
w.r.t. Ls as well. We denote by StS, which is a subset of StM, the set of strongly
maximal states.

Recall that the region Rs of a state s is contained in the current quasi
dominion Qs. We say that s is open if the player αs can escape from Qs starting
from Rs using a single move, i.e., if Rs ∩ escαs(Qs) ̸= ∅. In this case, the
opponent may escape from Rs by either moving to the remaining portion of local
area Ls \ Rs or to the quasi αs-dominion Hαs

s . The state is said to be closed,
otherwise. For technical convenience, a state with an empty region is always
considered open. Finally, a closed state s is promotable, if it is αs-maximal and
Rs is αs-maximal w.r.t. Ls. By StP ⊆ St we denote the set of promotable states.
The crucial property of a promotable state s is the following: the only possible
moves, if any, that player αs can use to escape from the αs-region Rs necessarily
lead to positions contained in the quasi αs-dominions in Hαs

s . Indeed, since s
is αs-maximal, and hence closed, no move from a αs-position of Ls ⊃ Rs can
lead to Hαs

s , which means that all such moves remain inside the current quasi
dominion Qs. This is the property that is leveraged by the promotion operation
at the basis of the approach.

11



The main function sol, the auxiliary function NextPr (with no side-effects),
and the two procedures Maximise and Promote (with side-effects on the state,
i.e. the input state is modified in place) of the new Priority Promotion based
approach, called Recursive Priority Promotion (RPP, for short), are provided
in Algorithm 1.

The function sol assumes the input state s to be maximal, i.e., s ∈ StM. At
Line 1 it checks whether there are still unprocessed positions in the game, that
is, if the priority of the current state is different from the pseudo priority ⊥. If
this is the case, Line 2 maximises the region Rs = r−1

s (ps) of the current state
by computing its αs-attractor atr

αs

⅁s
(Rs), so that the resulting set is αs-maximal.

Then, the state s is made strongly maximal, by lifting those positions to priority
ps in the region function rs, so that s ∈ StS at the end. If the resulting state s is
closed (Line 3) it is also promotable, i.e., s ∈ StP, being maximal by hypothesis,
and, therefore, a promotion is applied at Line 4 with a call to procedure Promote.

If, instead, s is open, which means that the opponent can escape from Rs

by choosing a move exiting from the current quasi dominion Qs, the algorithm
proceeds to analyse the part of the game still unprocessed. To do this, the
algorithm first computes the next state by means of NextPr(s), which simply
identifies the next priority to consider, namely the maximum priority among the
unprocessed positions. The resulting state is then passed to the recursive call at
Line 5.

Once the recursive call completes, the state is updated with the new region
function returned by the call. The new state s is such that the local area Ls

coincides with Rs, since the recursive call terminates after all the previously
unprocessed positions have been analysed. As a consequence, either the opponent
cannot escape from Rs anymore or it can only move to its own quasi αs-dominion
Hαs

s .
Line 6 checks which one of the two possibilities occurs. In the first case, the

new state s is closed, hence αs-maximal. Moreover, since Ls = Rs, the region Rs

cannot attract any other positions and is, therefore, αs-maximal. This means
that s is promotable, i.e., s ∈ StP, and Line 7 promotes the region to the quasi
αs-dominion Hαs

s inside the current quasi dominion Qs. If, on the other hand,
s is still open, then the opponent can escape to Hαs

s from some positions in
Rs. This means that the current state is not αs-maximal and Line 8 fixes this
by calling the procedure Maximise. The aim of this function is to reestablish
maximality of the quasi dominions Hαs

s and Hαs
s associated with the state s. This

is done by allowing the processed quasi dominions recorded in the state, namely
the ones with priority greater than ps, to attract positions from the current
region Rs = Ls. The surviving positions in Rs, if any, may not form a quasi
αs-dominion anymore and are reset to the original priorities recorded in the
priority function pr of the game. In any case, when the computation reaches
Line 9, whether coming from Line 4, Line 7, or Line 8, the state s is maximal,
i.e., s ∈ StM, and a second, and final, recursive call is performed on s to process
the remaining positions in Ls, if any (when coming from Line 7, Ls is necessarily
empty, so the recursive call could be skipped).

The auxiliary function NextPr generates a new maximal state ŝ = NextPr(s) ∈

12



StM, starting from a strongly-maximal one s ∈ StS, that is lower in the partial
order w.r.t. the one in input, i.e., ŝ ≺ s. The state ŝ is obtained by changing the
current priority ps to the highest priority q of the positions in Ls \ Rs. Observe
that, when no such position exists, namely when Ls = Rs, the new priority
coincides with the pseudo-priority ⊥.

Maximise enforces the maximality property on the state s received as input,
so that, in the resulting state obtained by modifying s in-place, no position of
the local area Ls can be attracted by the quasi α-dominions Hα

s, with α ∈ B. To
this end, the procedure computes (Line 2) the α-attractor atrα(Hα

s,Ls), collecting
all positions of Ls that player α can force to move into the attracting set Hα

s.
These positions are then assigned (Line 4) the priority q corresponding to the
minimum one associated with a position in the attracting set (Line 3). Since
removing positions from the local area Ls may induce a violation of the two
requirements of Definition 4, the positions that remain in Ls at the end of the
for-each loop of Lines 1-4 need to be reset to their original priority recorded in
pr, as prescribed at Line 5.

To conclude, the procedure Promote requires a promotable state s ∈ StP and
applies a promotion operation to the region Rs, while preserving any maximality
property already enjoyed by the input state. It first computes the opponent
best-escape priority q for the set Rs w.r.t. rs (Line 1). Intuitively, this is the
smallest priority the opponent can reach with one move when escaping from the
region Rs. Formally, it is defined as:

bepαs(Rs, rs)≜min(rng(rs ↾ rng(I ))),

where the binary relation I ≜Mv⅁ ∩ (escαs(Rs) × (dom(rs) \ Rs)) contains all
the moves leading outside Rs that the opponent can use to escape. The main
property of promotable states observed above ensures that the best-escape
priority q has always the same parity as αs. The procedure, then, promotes Rs

to q, by assigning (Line 2) the priority q to all the positions of Rs in the region
function rs. In particular, when the only possibility for player αs to escape from
Rs is to reach r−1

s (⊤α), the value of q is ⊤α. In this case, we are promoting Rs

from the status of quasi αs-dominion to that of αs-dominion. The correctness of
this is ensured by Theorem 1.

At this point, by defining sol(⅁)≜ (r−1(⊤0), r
−1(⊤1)), where r ≜ sol(sI), we

obtain a sound and complete solution algorithm for parity games. In particular,
the soundness follows from the fact that RPP always traverses states having
as invariant the property that r−1(⊤0) and r−1(⊤1) are dominions (see Item 2
of Definition 3). Completeness, instead, is due to the recursive nature of the
algorithm, whose base case ensures that no position is left unprocessed at any
given priority.

4. Parys’ Algorithm

Before obtaining a quasi-polynomial time algorithm based on the priority-
promotion approach, we present here a reformulation of the idea of [56], where

13



the recursion tree of the McNaughton algorithm is suitably truncated in order
to avoid the exponential blowup.

Naturally, cutting some of the recursive calls may prevent us from deciding
the winner for some of the positions with certainty. These intermediate results
may thus contain positions with an undetermined status. The contribution
of Parys’ idea is the design of the truncation mechanism that offers bounded
guarantees. Essentially, the undetermined sets contain all small dominions of
one player and do not intersect with small dominions of the other. The bounds
up to which these limited guarantees hold are shed quickly in the call tree: most
of the calls are made with half precision, meaning that one of the bounds is
halved, and only one is made with full precision, meaning that both bounds are
kept. The result is a quasi-polynomial time solution that we will combine with
the Priority Promotion approach in the next section, in order to preserve both
the complexity of the first and the efficiency of the second.

A first step in the integration of Parys’ approach with Priority Promotion
is to formulate it in the same terms by introducing the required notation. The
data structures are mostly inherited from the previous section. We need to
extend the search space to represent also the precision bounds and the set
of undetermined positions. While the two bounds can be simply encoded by
natural numbers, the undetermined positions will be stored in a priority-lift
function u that assigns to each priority p > 0 the set of undetermined positions
returned by the recursive calls made at priority p − 1. A Parys’ state s is a
tuple ((r, p), (u, b0, b1)), where the first pair comes from the the search state
define in Section 5 and the second tuple contains the function u, collecting the
undetermined positions for each recursion level, and the two bounds b0 and b1.
Recall that ∆α

r (resp., ∆α
u) collects the positions assigned to some α-priority

by the function r (resp., u), while ∆α,p
r ⊆ ∆α

r (resp., ∆α,p
u ⊆ ∆α

u) collects the
positions assigned by r (resp., u) to an α-priority of value at least p. For a
state s = ((r, p), (u, b0, b1)), we denote with us ≜ u the uncertain component, and
with b0s ≜ b0 and b1s ≜ b1 the bounds of the state. Once again, denoted rs ≜ r
and ps ≜ p the first two state components and by αs ≜ ps mod 2 the parity of
the state, the local area Ls ≜ {v ∈ dom(rs) | rs(v) ≤ ps} of a state s contains the
positions still unprocessed in that state, while Rs ≜ r−1(ps) denotes the region
of s. Then, we set Qs ≜∆αs,ps

rs ∪∆αs,ps
us and Hα

s ≜ (∆α
rs∪∆α

us) \ Ls, for all α ∈ B.
Essentially, H0

s and H1
s represent the portion of the game already processed to

which the two functions rs and us have assigned a priority with value strictly
greater than ps.

As opposed to the notions of RPP state, however, H0
s and H1

s are not neces-
sarily quasi dominions, since they may include undetermined positions, namely
those contained in ∆0,ps

us and ∆1,ps
us . Only the subsets ∆0,q

rs and ∆1,q
rs are known

to be quasi dominions, for all priorities q. The current subgame of a state s is,
then, ⅁s ≜ ⅁ \ (H0

s∪H1
s), containing all the unprocessed positions. In addition,

Us ≜ u−1
s (ps) collects the currently undetermined set of positions, which is re-

quired to satisfy the following property: it must contain all the αs-dominions of
size no greater than a given bound bαs

and it cannot intersect any αs-dominion
of size no greater than a second given bound bαs

.

14



Definition 6 (Parys’ Search Space). A Parys’ search space is a tuple S ≜
⟨St, sI ,≺⟩, whose three components are defined as follows:

1. St ⊆ (Rg × Pr⊥)× (Pf × N× N) is the set of Parys’ states s where:

a) dom(rs) ∩ dom(us) = ∅, dom(rs) ∪ dom(us) = Ps;

b) {v ∈ dom(us) | us(v) < ps}=∅ and u−1
s (⊤α)=∅, where α≜ pr(⅁) mod 2;

c) dom(us) ∩ escα(Hα
s) = ∅, for all α ∈ B;

2. sI ≜ ((pr, pr(⅁)), (∅, |⅁|, |⅁|)) is the initial state;

3. s1 ≺ s2 if Ls1 ⊂ Ls2 or Ls1 = Ls2 = ∅ and ps1 = ⊥ < ps2 .

Item 1a ensures that the set of positions in the game is partitioned into
two categories: those contained in the region function rs, which are considered
determined, in the sense that they belong to known quasi dominions; and those
contained in the priority-lift function us, which are undetermined, since they form
sets that only satisfy the bounded guarantees. Item 1b guarantees that there
cannot be undermined positions at priorities lower than ps and that the pseudo
priority ⊤αs

can never contain any undetermined position. These conditions
capture the intuitions that all positions with priorities lower than the current one
are still unprocessed, therefore they cannot be undetermined and that positions
assigned to a top pseudo-priority must be determined as they are won by the
corresponding player. Item 1c, instead, captures a more technical aspect of Parys’
approach. Essentially, it requires that the player α cannot escape to Ls starting
from an undetermined position at any α-priority recursion level. Intuitively,
the undetermined positions at any given level are formed by the subgame of
recursive sub-calls with bound equal to one (depleted). Thus, they form closed
sets, in the terminology of the previous section, from where the opponent cannot
escape to lower priorities. For this reason, we shall refer to this property also as
closed under attraction. The initial state is composed of the pair of the priority
function pr and the maximal priority pr(⅁) of the game, and the tuple with the
empty priority-lift function ∅, and the two (full) bounds that corresponding to
number of positions in the game. Finally, the order relation ≺, is defined the
same way as done for the state space for Priority Promotion.

Example 6. Figure 3 depicts an example game on the left-side and, on the right-
side, the corresponding graphical representation of one of the states computed
during the execution of Parys’ algohrithm, whose interpretation is similar to
that of Figure 2 and where, in addition, we indicate with pattern-filled rectangles
the slots of the undetermined function us and the undetermined region Us. Let
us consider the state s = ((r, 1), (u, 2, 2)), where r = {b 7→ 7; c 7→ 6; n 7→ 5; d 7→
4; m 7→3; g, i 7→1} is the region function, u = {a, e, f 7→2} is the undetermined
function, and αs = 1. The current priority ps is 1 and the two bounds are
b0s = 2 and b1s = 2. The local area Ls contains the positions g, h, i, and l.
Among these, g and i are part of the current region Rs. These positions, together
with ∆1

u= {a, e, f}, and b, n, m, form the current set Qs. The quasi 0-dominion

15



a/0

b/7

c/6

d/4

e/1

f/2

g/1

h/0

i/1

l/0

m/3

n/5

H0
s H1

s

Ls

Qs

⊤0 ⊤1

7

6

5

4

3

2

1

RsUs

∅ ∅

b

c

n

d

m

a, e, f

g, i

h, l

Figure 3: A game and a corresponding state representation.

H0
s contains positions d, and c, which are both part of the region function r.

The quasi 1-dominion H1
s, on the other hand, takes the remaining positions with

priority greater than 1, namely positions b, n and m, stored in the region function
r, and positions a, e and f, which are stored in the uncertain function u.

Just like RPP does not use undetermined positions, Parys’ approach does
not use promotions, even if it handles regions (by means of the attractor of
the positions with highest priority). Consequently, little happens to the region
function in our representation of Parys’ algorithm: positions that are added to
Us are removed from the region function, and when Us is destroyed, they are
added (with their native priorities) back to rs.

Since the purpose of this section is to revisit Parys’ algorithm, here we only
outline the principles, by reporting some of the standard lemmas from [59] that
will be used later on also by the hybrid approach.

The first lemma simply states that dominions are closed under opponent
attraction from the complement set of its positions.

Lemma 1. Let D be a dominion for player α and S ⊆ Ps a set of positions. If
D does not intersect with S then it does not intersect with atrα(S) either.

The second specifies that in case a dominion includes positions with a higher
opponent priority, then it also has to include a smaller dominion closed under
opponent attraction from the set of positions with the higher opponent priority.

Lemma 2. Let D be a dominion for player α with highest priority p and R
a α-region of priority q with q > p. If D intersects with R then it contains a
non-empty sub-dominion that does not intersect with atrα(R).

16



Algorithm 2: Parys Solver

function sol(s : St) : 2Ps

1 if ps = ⊥ ∨ bαs = 1 then
2 return (rs, us)

else
3 hsol(s)
4 ŝ← s
5 (rs, us)← sol(NextPr(s))
6 Maximise(s)
7 if s ≺ ŝ then hsol(s)
8 return Und(s)

Auxiliary Functions & Procedures

function NextPr(s : St) : St
1 return ((rs, ps−1),(us, ps, b0s, b1s))

function Half(s : St) : St

1 (b0s, b1s)←
(⌊

b0s
1+αs

⌋
,
⌊

b1s
2−αs

⌋)
2 return NextPr(s)

Half-Solver

procedure hsol(s : St)
1 repeat
2 rs ← rs[atr

αs

⅁s
(Rs) 7→ ps]

3 ŝ← s
4 (rs, us)← sol(Half(s))
5 Maximise(s)

until s ̸≺ ŝ

Auxiliary Functions & Procedures

procedure Maximise(s : St)
1 X← atrαs

(
Hαs

s ,Ls

)
2 rs ← rs \X
3 us← us[X 7→ ps]
4 if X ̸= ∅ then
5 rs← rs[v∈Rs 7→pr(v)]

function Und(s : St) : Rg×Pf
1 us ← us[Ls 7→ ps + 1]

2 rs ← r
(>ps)
s [v∈Us 7→ pr(v)]

3 return (rs, us)

The main algorithm is composed of a full bound precision function sol
and an halved precision procedure hsol that are reported in the upper part
of Algorithm 2. The auxiliary procedure Maximise and the auxiliary functions
NextPr, Half, and Und are reported in the lower part.

In order to outline the structure of function sol, it is helpful to first describe
the halved precision procedure hsol. The half-solver hsol maximises, at Line 2,
the region Rs = r−1

s (ps) of the current state by computing its αs-attractor
atrαs

⅁s
(Rs). The remaining subgame from which Rs has been removed, is recursively

solved by a call of sol with half precision by means of the function Half that
halves the bound bαs

for the current player αs. As long as the maximisation of
the state returned by the call to sol at Line 4 differs from the copy of the local
state saved at Line 3, the procedure will repeat the loop of Lines 2-5. Note that
in all these iterations the priority ps remains the same; therefore, the positions in
current region Rs have to change at every iteration (and they can only do that by
shrinking), otherwise the repeat-until loop will stop. Then this loop ensures that

every small αs-dominion, those of size at most
⌊
bαs

2

⌋
in the subgame that are

not included in small αs-regions of size at most bαs , are found and returned in
the uncertain function us. The observation above is a consequence of Lemmas 1
and 2. If such a small αs-dominion does not intersect with the current αs-region
Rs, then by Lemma 1, it is included in the remaining subgame, and identified
by the call of sol. If, instead, it intersects with Rs, then, by Lemma 2, there

17



must be a sub-dominion that cannot be attracted by Rs and, therefore, will be
identified by the next call to sol.

The function sol has a base case at Line 1, where it checks if there are
unprocessed positions in the current state (which implies that ps > ⊥) or the
bound for player αs is not depleted. The function can perform three recursive
calls, two of the half-solver, and one of sol itself. The first call to hsol, at
Line 3, serves to find small dominions in the subgame, while the call to sol,
at Line 5, finds big dominions that the previous call might have been unable
to find due to the bound constraint. If the full precision call has not found a
αs-dominion, then the subgame does not contain any dominion for the bound
available. In this case a second call to hsol would be pointless as hsol has a
smaller bound than sol. Therefore, the function ends by calling Und, which
records the entire current subgame Ls as the undetermined set for the caller at
level ps+1. Otherwise, when the full precision call returns a new αs-dominion D,
there might be other small αs-dominions in the subgame to find. This follows for

the fact that D is bigger than
⌊
bαs

2

⌋
and it has been closed under αs-attractor

by the call to Maximise at Line 6. This operation can reset Rs that has been
identified by hsol and possibly release a small αs-dominion previously included
in Rs. For this reason a second and final call to hsol is performed to identify
such small αs-dominions. This case occur only when the updated state returned
at Line 5 differs from the copy of the local state saved at Line 4. At the end of
the function, when Und is called at Line 8, all αs-dominions of size at most bαs

have been identified and processed in Us. Therefore, none of them intersects
with Ls that instead contains the bounded winning region of player αs. At this
point, since the guarantees for the winning αs-region are bounded, Ls is moved
to the uncertain set U of the caller priority, that is ps + 1.

The auxiliary function NextPr generates a new maximal state by decreasing
the current priority by 1. Also Half generates a new maximal state, by first
halving the precision bound for player αs and then calling NextPr.

As in the case of the RPP solver, Maximise enforces the maximality property
on the current state s. As a result, in the modifies state s, no positions of
the local area Ls can be attracted by the quasi αs-dominion Hαs

s . To obtain
maximality, the procedure computes at Line 1 the αs-attractor atr

αs
(
Hαs

s ,Ls

)
,

which collects all the position in Ls that player αs can force to move into Hαs
s .

The attracted set is then removed from rs at Line 2 and assigned at Line 3 to
us at the current priority ps. Attracting positions from Ls may result in the
violation of the requirements of Definition 4 for the positions that remain in
Rs. For this reason, if H

αs
s does attract some positions from Ls, the rest of Rs

is reset, i.e. the priority of its positions is set to their original priority in pr, as
prescribed by Line 5. Note that the remaining positions of Ls need not be reset,
since their priorities are already those recorded in pr.

Finally, the function Und takes care of handling the undetermined positions
computed at the end of a call to the solver. It receives in input a state where all
αs-dominions of size at most bαs (that are not included in αs-regions of size at
most bαs) have been moved into Us. It follows that Ls is a bounded winning

18



region for player αs.
To explain how Und works, let s be the current state and s′ the one of the

caller priority level ps +1, where, in case ps = pr(⅁), then ps +1 denotes the top
pseudo-priority ⊤α, with pr(⅁) ≡2 α. Since Und is the last operation executed
before the return to the call corresponding to state s′, the bounded winning
αs-region Ls at the current priority level ps is added to the uncertain winning
set of positions for player αs in s′, that is Us′ (Line 1). The positions of Us are
instead reset at Line 2 and moved into rs at their original priority. Therefore,
these positions will be part of the unprocessed partition of the game of s′, that is
Ls′ . Clearly, no new position added to the undetermined function can be forced
to move to Ls′ by means of an opponent attractor operation in accordance with
Item 1c of Definition 6 applied to the new state s′.

When sol(sI) terminates by calling Und, it returns the pair composed of rsI
and usI , and the two winning regions correspond to the sets Wnα⅁ = u−1

sI (⊤α)

and Wnα⅁= ⅁ \Wnα⅁.

Corollary 1. Let (r, u) be the pair of region and promotion functions computed
by Algorithm 2 on a game ⅁. The winning region for player α corresponds to
u−1(⊤α).

We provided a different formalisation of Parys’ algorithm by means of the
pair of region and promotion functions. The correctness corollary can be found,
in a different formulation, in the original paper [56].

5. A Hybrid Algorithm

In our hybrid approach, we have to synthesise the use of regions employed in
the RPP solver and the use of undetermined sets introduced to implement Parys’
approach. To formalise this intuition into a hybrid state, we need to further
modify the simple state of RPP w.r.t. the changes already introduced in the
Parys’ search space of Definition 6. The good news is that the data structure of
a Parys’ state stores almost all the information required by the hybrid algorithm.
It follows that, syntactically, the hybrid state corresponds to the Parys’ one with
an additional priority and, semantically, it satisfy an additional property.

The most relevant difference between the two approaches is that, unlike
Parys’ algorithm, the hybrid algorithm does not explore sequences of states with
consecutive priorities. Instead, like the RPP approach, it can skip priorities
that do not occur in the current subgame. To account for the gap between the
priority of the parent recursive call and the current one associated with the
state, we introduce in the state an additional component c that records the caller
priority. Clearly, since no recursion levels are present between the caller and the
current priorities, no position can be recorded between those two levels in either
of the two functions r and u of that state. This follows form the fact that the
priority selected by the caller for the next sub-call is the maximum one existing
in the subgame. Therefore, both r and u will not contain positions with priority
lower that the caller one and higher than the sub-caller one.

19



A hybrid state s is a tuple ((r, p), (u, b0, b1), c), which contains all the compo-
nents of the Parys’ state, namely, the region function r, the current priority p,
the undetermined function u, and the two bounds b0 and b1, one for each player,
as well as the additional priority c of the caller. We set cs≜ c, while the elements
αs, ps, bαs

, rs, us, Qs, H
α
s, Us, Rs, and Ls are defined as in the previous section.

The caller priority of the initial state is set to the pseudo priority ⊤αs
.

Definition 7 (Hybrid Search Space). A hybrid search space is a tuple S ≜
⟨St, sI ,≺⟩, whose three components are defined as follows:

1. St ⊆ (Rg×Pr⊥)× (Pf ×N×N)×Pr⊤ is the set of hybrid states s where:

a) dom(rs) ∩ dom(us) = ∅, dom(rs) ∪ dom(us) = Ps;

b) {v ∈ dom(us) | us(v) < ps}=∅ and u−1
s (⊤α)=∅, where α≜ pr(⅁) mod 2;

c) dom(us) ∩ escα(Hα
s) = ∅, for all α ∈ B;

d) {v ∈ dom(f) | ps < f(v) < cs} = ∅, for f ∈ {rs, us}, and ps < cs;

2. sI≜((pr, pr(⅁)), (∅, |⅁|, |⅁|),⊤α) is the initial state, where α≜pr(⅁) mod 2;

3. s1 ≺ s2 if Ls1 ⊂ Ls2 or Ls1 = Ls2 = ∅ and ps1 = ⊥ < ps2 .

The only new condition w.r.t. Definition 6 is Item 1d, which requires that
no position be contained in either rs or us at priorities between ps, the current
priority, and cs, the caller one.

Most of the concepts and notation introduced in a Parys’ state have a similar
meaning and play a similar role in a hybrid state. In particular, given a hybrid
state s ∈ St, the set Ls identifies the local area, i.e., the set of positions yet
to analyse, while Rs is the quasi αs-dominion, called region, included in Ls,
which the algorithm is currently focusing on. Moreover, the two sets H0

s and H1
s

partition the portion of game already processed.

Example 7. Figure 4 depicts a snapshot of the execution of the hybrid algorithm
on the example game described in Example 6. Again, the left-side depicts the
game, while the right-side provides a graphical representation of the hybrid state in
the considered snapshot with the same graphical conventions adopted in Figure 3.
The hybrid state s corresponds to the tuple ((r, 1), (u, 2, 1), 1), where the first two
components are region function r = {i, l 7→⊤0; b 7→⊤1; c 7→6; n 7→5; d 7→4; n 7→
3; g 7→1} and the current priority p = 1. It follows that the parity of the state
is αs = 1. In the second part of the state we have u = {a, e, f 7→2} that is the
undetermined function, the two bounds b0 and b1, that are both 1, and the caller
priority c set to 2. The local area Ls, represented in grey at the bottom of the
picture, contains the positions g, and h. Among these, only g is part of the
current region Rs. This position, together with ∆1

u= {a, e, f} and ∆1
r = {b, n, m}

forms the current quasi dominion Qs represented by the right column in red of the
picture. The quasi 0-dominion H0

s, represented in blue, contains positions i, l, c,
and d, that are all stored in the region function r, while the quasi 1-dominion H1

s

takes the remaining positions with priority greater than 1. The positions stored

20



a/0

b/7

c/6

d/4

e/1

f/2

g/1

h/0

i/1

l/0

m/3

n/5

H0
s H1

s

Ls

Qs

⊤0 ⊤1

7

6

5

4

3

2

1

RsUs

i, l b

c

n

d

m

a, e, f

g

h

Figure 4: A game and a corresponding state representation.

in r with value ⊤0 or ⊤1 are dominion already identified, and therefore solved by
the algorithm. For this reason, in the picture, these positions are represented with
non-dashed lines and their winning strategy is highlighted with coloured edges.

It is worth noticing that Parys’ algorithm reaches the state depicted in
Example 6 regardless the two positions m, and n. On the contrary, for the hybrid
algorithm, these two positions are required to deplete the precision bound. Without
m and n, the hybrid algorithm can easily solve the game thanks to the skip of
the priorities that do not occur in the subgame. It follows that whenever a game
has priorities that are not consecutive, the hybrid algorithm solves it easier than
Parys’ approach.

Given a player α ∈ B, we say that a hybrid state s ∈ St is α-maximal, if
the quasi α-dominion Hα

s is α-maximal w.r.t. Ls. If s is α-maximal w.r.t. both
players α ∈ B, we say that it is maximal. We denote with StM ⊆ St the set
of maximal hybrid states and with ⅁s ≜ ⅁ \ (H0

s∪H1
s) the induced subgame of

s. A maximal hybrid state s is strongly maximal, if the current region Rs is
αs-maximal w.r.t. Ls. With StS ⊆ StM we denote the set of strongly maximal
hybrid states. Again, we say that s is open if Rs ∩ escαs(Qs) ̸= ∅, and that it is
closed, otherwise. For technical convenience, we consider open a hybrid state
whose region Rs is empty. Finally, a closed hybrid state s is promotable, if it is
αs-maximal and Rs is αs-maximal w.r.t. Ls. With StP ⊆ St we denote the set
of promotable hybrid states.

The main functions and the auxiliaries procedures of the Hybrid Priority
Promotion algorithm (HPP, for short), which are provided in Algorithm 5,
synthesise the recursive Priority Promotion technique of Algorithm 1 and the

21



recursion-tree truncation idea of Algorithm 2 into a single approach.

Algorithm 5: HPP Solver

function sol(s : StM) : Rg × Pf
1 if ps = ⊥ ∨ bα = 0 then
2 return (rs, us)

else
3 hsol(s)
4 ŝ← s
5 (rs, us)← sol(NextPr(s))
6 if s is open then
7 Maximise(s)

else
8 Promote(s)

9 if s ≺ ŝ then hsol(s)
10 return Und(s)

Algorithm 6: Half-Solver

procedure hsol(s : StM)
1 repeat
2 rs ← rs[atr

αs

⅁s
(Rs) 7→ ps]

3 ŝ← s
4 if s is open then
5 (rs, us)← sol(Half(s))
6 if s is open then
7 Maximise(s)

else
8 Promote(s)

else
9 Promote(s)

until s ̸≺ ŝ

Auxiliary Functions

function NextPr(s : StS) : StM

1 q ← max
(
rng

(
r
(<ps)
s

))
2 return ((rs, q), (us, ps, b0s, b1s))

function Half(s : StS) : StM

1 (b0s, b1s)←
(⌊

b0s
1+αs

⌋
,
⌊

b1s
2−αs

⌋)
2 return NextPr(s)

function Und(s : StS) : Rg×Pf
1 if cs ≡2 αs then
2 us ← us[Us 7→ cs]

else

3 us ← u
(≥cs)
s [Ls 7→ cs]

4 rs ← r
(≥cs)
s [v∈Us 7→ pr(v)]

5 return (rs, us)

Auxiliary Procedures

procedure Promote(s : StP)

1 (pr, pu)←(bepαs(Rs, rs), bep
αs(Rs, us))

2 if pr ≤ pu then
3 rs ← rs[Rs 7→ pr]

else
4 (rs, us)← (rs\Rs, us[Rs 7→ pu])

procedure Maximise(s : St)
1 Z← Rs

2 foreach α ∈ B do
3 X← atrα(Hα

s,Ls)
4 q ← min(rng((rs ∪ us) ↾ Hα

s))
5 if q ≡2 α then
6 rs ← rs[X 7→ q]
7 us← us \X

else
8 rs ← rs \X
9 us ← us[X 7→ q]

10 if Z ̸= Rs then
11 rs← rs[v∈Rs 7→pr(v)]

Like RPP, the main function sol assumes the input state s to be maximal,
i.e., s ∈ StM. Line 1 checks whether (i) there are no unprocessed positions in the
game or (ii) the bound for player α[s] for the guarantees on the undetermined
positions has reached the threshold zero. If one of these conditions is satisfied,

22



the current region function rs and the undetermined function us are returned
unmodified at Line 2, as no further progress can be obtained in the current
recursive call. Otherwise, similar to Parys’ approach, the search for a dominion
is split into three phases: (i) a first search with halved precision made by calling
the auxiliary mutually-recursive procedure hsol (Line 3); (ii) a second search
with full precision with a recursive call to sol itself (Lines 4 to 8); (iii) a final
search by means of hsol, again with halved precision, conditioned to the actual
progress obtained during the previous phase (Line 9). On termination of these
three phases, the information about the undetermined positions contained in the
local area Ls or in the undetermined set Us are handled by the function Und at
Line 10.

To discuss the guarantees and their effects in more detail, let us fix a small
α-dominion D, with |D| ≤ bαs . Then, the call to hsol at Line 3 modifies the
maximal state s given as input in-place, turning it into a strongly-maximal
one so that Ls no longer contains any tiny dominions of player αs of size less
than or equal to ⌊ bαs

2 ⌋. It follows that hsol might have not enough precision
bound to guarantee that D is found. Therefore, what eventually remains is a set
D′ = D ∩ Ls that is a dominion in Ls by Lemma 1. The set D \ D′, has been
instead processed and added either to us at some priority q ≥ p or to rs at some
priority q > p. Moreover, by Lemma 2, D′ has a non-empty sub-dominion D′′

that does not intersect with the current region Rs. Since Ls contains no tiny
αs-dominions, it holds that |D′′| > ⌊ bαs

2 ⌋, and D′ \D′′ < ⌊ bαs

2 ⌋. After this first
call to hsol, the resulting state is locally stored, at Line 4, in order to determine,
later on, whether the second phase achieves any progress.

The algorithm then proceeds to analyse the remaining part of the game still
unprocessed. To do so, the next state computed by NextPr(s) is given as input
to the recursive call sol at Line 5. Once the call completes, the state is updated
with the two new functions returned by the call. At this point, also D′′ has been
processed, since sol has enough precision bound to find D′′. What eventually
remains unsolved is the set D′ \ D′′. This set, however can only contain tiny
αs-dominions that can also be found by hsol.

At this point, depending on whether or not the state is closed, either a
promotion or a maximisation operation is performed (Lines 6 to 8) to ensure
that the new state is maximal. If the middle phase with full precision made some
progress in the search, a last call to hsol at Line 9 is performed, which again
modifies the current state in-place turning it into a strongly-maximal one. Due
to the small size of the residual unsolved dominions, this call suffices to solve the
corresponding subgame ⅁s. If no progress occurred, instead, the current state s
is equal to the one stored in and previously returned by the first call to hsol.
Thus, s is strongly-maximal, D′ was empty in the first place, and D has been
completely processed in that first call to hsol. In either case, the state is fed
to the function Und to handle possible undetermined positions, after which the
current call terminates.

The procedure hsol simply executes the main body of the RPP algorithm
by making mutually-recursive calls to the function sol (Line 5) with halved
precision until no progress on the search for a dominion can be made. Similarly to

23



RPP, the auxiliary function NextPr identifies the next priority to consider, and
the promotion and maximisation procedures, Promote and Maximise, generalise
the corresponding procedures defined for RPP. Specifically, Promote applies
a promotion, but this time the best escape priority can belong either to r or
to u. Therefore, in base of the escaping priority, the current region R can be
promoted to r, as for the classic Priority Promotion approach, or removed for it
and promoted to u. Finally, Maximise turns a state s into a αs-maximal one, by
maximising both r and u. Similar to Parys’ algorithm, the Half function halves
the bound of the player αs, leaving the bound of player αs unchanged. Finally,
the Und function starts from a strongly maximal state s ∈ StS where all small
dominions of player αs of size ≤ bαs

at the time of the current call are processed.
Thus, neither do any of the small dominions (≤ bαs

) of player αs intersect with
Us, nor do any of the small dominions (≤ bαs) of player αs intersect with Ls.
Depending on the parity of the calling priority cs, we can return the respective
set (Us or Ls) and, where the parity is different, reset the positions of Us in r to
their original priority.

At this point, by defining the winning regions of the players as Wnα⅁ =
r−1(⊤α)∪u−1(⊤α) and Wnα⅁= ⅁\Wnα⅁, where (r, u)≜ sol(sI), we obtain a sound
and complete solution algorithm, whose time-complexity is quasi-polynomial, as
we shall show in the next section.

6. Correctness and Complexity

We now discuss how we can entangle the concepts of Priority Promotion, i.e.
the transfer of information across the call structure that makes it more efficient
in practice, with the concept of relative guarantees that provides favourable com-
plexity bounds to Parys’ algorithm. Before turning to the principle guarantees
provided by the algorithm, we note that the two algorithms from the previous
sections (Parys’ and the selected variation of Priority Promotion) can be viewed
as variations of our hybrid algorithm. This is particularly easy to see for the
RPP algorithm from Section 3: when we set the bounds to infinity (or to 2c,
where c is the number of different priorities of the game) then the algorithm
never runs out of bounds. In this case, the function u is never used, and the
algorithm behaves exactly as Algorithm 1. In more detail, the whole game is
recursively solved by the first call to hsol at Line 3 of Algorithm 5 that act like
sol of Algorithm 1. Half has no effect, because the bounds always remain greater
than 0, and Und does nothing since Us is constantly empty and, at the end of
sol, Ls is empty as well. Finally, Promote and Maximise only use the function r
as a consequence of the fact that u is never filled by Und.

The connection to Parys’ algorithm is slightly looser, but essentially it works
one priority at a time solving the game purely with attractors. Hence it gives
up promoting positions to higher priorities. This change does not impact on
the partial correctness argument as it guarantees progress, but significantly slow
down the solution procedure. In more detail, neither sol nor hsol check for
open/closed regions as all regions are always treated as open. Half is the same,
NextPr does not skip any priority and, as a consequence, u always applies the

24



case in which the parity of the current priority is different from the parity of the
caller priority, assigning the uncertain positions to the previous (caller) priority.
Finally, Maximise closes only u under attractor.

As the algorithm is a hybrid one, its correctness proof has both local and
global aspects. The global guarantees are that the regions stored in r(>ps) and the
bounded dominions stored in u(≥ps) retain their properties (that are described
in the last lemma) in all function calls. The local guarantees refer instead to the
local area Ls of the current state s introduced in Definition 7. To conveniently
reason about the guarantees we define the set Ps, which stores the local area Ls

at the beginning of the call of sol; Ps is then available also in the hsol at the
level where they are called.

This additional set Ps of initial positions is relevant as the guarantees of
finding small dominions is formulated relative to it and not relative to the local
area Ls at the end of sol. The correctness proof falls into lemmas that refer to
the guarantees maintained by the auxiliary functions, and an inductive proof
of the main lemma. We introduce in the following the lemmas for the auxiliary
functions, while their proofs are reported in Appendix A. A final one, instead,
outline the inductive proof for the main functions making use of the previous
lemmas. After them, we report a theorem for the correctness of the algorithm
that immediately follows from the invariants that have been proved before.

Lemma 3. Given a strongly-maximal hybrid state s ∈ StS, the functions
NextPr(s) and Half(s) return a maximal hybrid state ŝ ∈ StM such that ŝ ≺ s.

This lemma states that both NextPr and Half take as input a strongly-
maximal hybrid state and return a new maximal hybrid state which is smaller
w.r.t. ≺ (the ordering among states from Definition 7).

Lemma 4. Given a hybrid state s ∈ St, the procedure Maximise(s) modifies
in-place s into a maximal hybrid state ŝ ∈ StM such that ŝ ≼ s.

The procedure Maximise takes as input a hybrid state that modifies in-place
into a maximal hybrid state which is no greater than the original one w.r.t. ≺.

Lemma 5. Given a promotable hybrid state s ∈ StP, the procedure Promote(s)
modifies in-place s into a maximal hybrid state ŝ ∈ StM such that ŝ ≺ s.

The procedure Promote takes as input a promotable hybrid state that modifies
in-place into a maximal hybrid state which is smaller than the original one w.r.t.
≺.

Lemma 6. Given a strongly-maximal hybrid state s ∈ StS, the function Und(s)
returns a pair (̂r, û) ∈ Rg×Pf of a region function r̂ and a promotion function û

such that: 1) r
(>ps)
s ⊆ r̂(>ps); 2) u

(>ps)
s ⊆ û(>ps); 3) ŝ = ((̂r, cs), (û, b0, b1), q)) is

a promotable hybrid state if ŝ is closed and, an hybrid state otherwise, for all
priority q ∈ pr such that cs < q ≤ min(rng(rs ∪ us

>cs)), and b0, b1 ∈ N.

The function Und takes as input a strongly-maximal hybrid state and returns
a pair of region and promotion functions (̂r, û) that can be used to compose

25



a new hybrid state. In particular, both r̂ and û include the positions mapped
above the priority ps in the input state components r and u, respectively. The
new hybrid state can be composed by swapping, in the input state, the old pair
(r, u) with (̂r, û) and the current priority p with the caller one c. Moreover, in
case such new state is closed, then it is also promotable.

Lemma 7. Given a maximal hybrid state s ∈ StM, the function sol(s) terminates
and returns a pair (̂r, û) ∈ Rg×Pf of a region function r̂ and a promotion function

û such that: 1) r
(>ps)
s ⊆ r̂(>ps); 2) u

(>ps)
s ⊆ û(>ps); 3) ŝ = ((̂r, cs), (û, b0, b1), q)

is a promotable hybrid state if ŝ is closed and, an hybrid state otherwise, for
all priorities q ∈ pr such that cs < q ≤ min(rng(rs ∪ us

>cs)), and b0, b1 ∈ N.
Moreover, the procedure hsol(s) modifies in-place s into a strongly-maximal
hybrid state ŝ ∈ StS such that ŝ ≼ s.

This lemma states that the function sol takes as input a maximal hybrid
state and, when it terminates, it returns a pair of region and promotion functions
(̂r, û). In particular, both r̂ and û include the positions mapped above the priority
ps in the input state components r and u, respectively. The new hybrid state
can be composed by swapping, in the input state, the old pair (r, u) with (̂r, û)
and the current priority p with the caller one c. Moreover, in case such new
state is closed, then it is also promotable. The procedure hsol, instead, modifies
in-place a maximal hybrid state into a strongly-maximal hybrid state which is
no greater than the original one w.r.t. ≺.

We can now proceed with the main lemma.

Lemma 8. main Let s ∈ StM be a maximal hybrid state for a parity game
⅁, where b0s and b1s are positive. Assume sol is called on s and let s′ ≜
((̂r, p′), (û, b0s, b1s), c

′) be the hybrid state, for (̂r, û)≜ sol(s), p′ ≜ cs, and some
c′ > cs. For α = αs, the following holds:

• at the end of the call, Hα
s and Hα

s contain all small dominions of player α
and size at most bα, and small dominions of player α and size at most bα,
respectively, in Ps;

• if cs ≡2 α then Hα
s = Hα

s′; hence, H
α
s′ preserves all global guarantees of Hα

s;

• if cs ̸≡2 α then Hα
s′ = Hα

s; hence, Hα
s′ preserves the dual of all global

guarantees of Hα
s (since the caller player cs has dual parity w.r.t. α).

Moreover, if hsol is called on s ∈ StM, then it modifies s into a strongly-maximal
hybrid state with the following properties:

• at the end of the call, Hα
s and Hα

s contain all small dominions of player α
and size at most bα, and tiny dominions of player α and size at most

⌊
bα
2

⌋
,

respectively, in Ps;

• Ls does not contain a small dominion of player α of size at most
⌊
bα
2

⌋
,

and Hα
s is closed under attractor in Ps.

26



Proof. We provide an inductive proof over the highest priority.
For the induction basis we consider the four cases in this order: (1) sol

with highest priority ⊥ (i.e. on the empty game); (2) hsol being called with
highest priority 0; (3) hsol with highest priority ⊥; and (4) sol being called
with highest priority 0.

Case 1: When sol is called on the empty game the highest priority is ⊥ and
there is nothing to do (and due to Lines 1-2 sol does nothing).

Case 2: For games with maximal (and thus only) priority 0 in hsol, all
states are in Rs, hence s is closed, and consequently, due to Lines 4 and 9, all
states are promoted. The game is then empty (s is open), and by Lines 4 and
5, sol is called on the empty game. After that, Maximise is called (again on an
empty set of positions). All global guarantees are retained due to Lemma 5,
case 1, and Lemma 4. Moreover, as dom

(
r≤0
s

)
= u−1

s (0) = ∅, the additional
requirement for hsol holds.

Case 3: The case in which hsol is called on the empty game, is a sub-case
of case 2 since s is open, and sol is called on the empty game.

Case 4: For games with maximal (and thus only) priority 0 in sol, all
positions are promoted in the first call of hsol at Line 3 of Algorithm 5, similarly
as shown for case 2. Then, s is empty and the successive call of sol at Line 5, of
Maximise at Line 7, and of Und at Line 10 do nothing. The second call of hsol
at Line 9 is skipped as s has not changed since Line 4.

Thus, the global guarantees are retained by the other base cases 1 and 2, and
due to Lemmas 4 and 6.

We now implement the induction step, again first for hsol, and then for
sol, using the results from hsol.

When executed, the call of sol at Line 5 of hsol provides, by induction
hypothesis, an increase of Hα

s, which now contains every small dominion of player

α of size at most
⌊
bαs

2

⌋
in Ls \Rs from before the call, while retaining all global

guarantees of Hα
s for which the bound is still bαs

. When
⌊
bαs

2

⌋
= 0, instead sol

does nothing, trivially retaining the guarantees.
Thus, the global guarantees are preserved in every step either by induction

hypothesis and Lemma 3, by the base case
⌊
bαs

2

⌋
= 0, or by Lemmas 4 and 5

when functions Promote and Maximise are called.
Finally, to see that Hα

s is closed, we observe that it is closed after Maximise is
called, due to Lemma 4. Moreover, in a generic iteration of hsol, if s is closed,
it follows a promotion and then s ≺ ŝ triggers a new iteration, otherwise when s
is open the last operation executed is a call of Maximise. Hence, in both cases
we have that Hα

s is closed when hsol ends.
So far we have shown that Hα

s contains all small α-dominions of size at most⌊
bαs

2

⌋
in Ls \Rs. And since s has not changed during the call, it also contains

the small dominions after the call, and on the time of return. To conclude this
induction step we have to show that Hα

s contains also the small dominions in
Ls. Do to this, we observe that Rs is an α-region with highest priority ps, and
that, by Lemma 2, for any non-empty α-dominion D′ in Ls, there must be a

27



non-empty sub-dominion D′′ ⊆ D′, which is also a α-dominion in Ls \ Rs. As a
consequence, since Ls \Rs does not contain a α-dominion D with size at most⌊
bαs

2

⌋
when hsol returns, we can conclude that neither does Ls.

We can now turn to the induction step for sol. We first check that the global
guarantees are retained up to the point where Und is called, then we make the
argument that sol will, for a α-dominion D in Ps of size |D| ≤ bαs , guarantee
that D ⊆ Hα

s holds. We will finally show that, under these conditions, Und will
retain the global guarantees.

The check that the global guarantees are retained up to the point where Und
is called is straightforward as we have seen that hsol (called at Lines 3 and 9)
does by the induction step and Lemma 7, and both Maximise and Promote do
retain the global guarantees by Lemmas 4 and 5, respectively.

We now argue that, when Und is called, Hα
s contains all α-dominions in Ps of

size at most bαs
. Let D be such a dominion.

We first observe that by the global guarantees Hα
s \ Rs and its α-attractor

atrα(Hα
s \ Rs), cannot intersect with D at any point. Thus, D is a dominion in

Ps \ atrα(Hα
s \ Rs) at any point by Lemma 1.

After the first call of hsol (at Line 3), we have established by induction step

that Ls does not contain a α-dominion of size at most
⌊
bαs

2

⌋
. Now two cases

may arise: Ls does not intersect with D or it does. The first case entails that D
must be contained in Hα

s. In the second case, there is a set D′ = D ∩ Ls that,
by Lemma 1, must be a α-dominion in Ls, as well as in Ps \ atrα(Hα

s \ Rs). By
Lemma 2, we also know that D′ has a sub-dominion D′′ ⊆ D′ that does not

intersect with Rs. Moreover, since Ls contains no smaller dominions than
⌊
bαs

2

⌋
,

it follows that |D′′| >
⌊
bαs

2

⌋
. Thus, by induction hypothesis, after the call of

sol from Line 5, Hα
s also contains D′′. Note that in this case s ≺ ŝ holds, and

therefore hsol is called at Line 9. Again, by induction step, the global guarantees
are retained, therefore also D′ \D′′ is included in Hα

s.
Let us assume for contradiction it is not. Then, after the return from hsol,

there is a non empty set E = Ls ∩ (D′ \ D′′) that still belongs to the current

subgame. Clearly D ⊇ D′ ⊇ D′ \ D′′, and since |D| ≤ bαs
and |D′′| >

⌊
bαs

2

⌋
,

it easily follows that |E| ≤
⌊
bαs

2

⌋
. Moreover, by the global guarantees, E

cannot intersect with Hα
s \ Rs or with its attractor atrα(Hα

s \ Rs). Hence, E is
contained in Ps \ atrα(Hα

s \ Rs), and Hα
s (that now includes D′′) is closed under

α-attractor in Ps. Thus, by Lemma 2, E must be a α-dominion in Ls, as well as
in Ps \ atrα(Hα

s \ Rs). However, due to the inductive hypothesis, after the call of
hsol at Line 9 we have that Ls cannot contain such a small dominion for player
α, contradicting the assumption that E is not empty.

We have now established that the global guarantees hold when Und is called,
as Hα

s contains all α-dominions of size at most bαs
in Ps. This entails that H

α
s∪Ls

contains all α-dominions of size at most bαs in Ps, when Und is called.
Und then moves the respective set, Us (or Ls), to u−1

s (cs) of the caller priority

28



cs, such that Hα
s′ is equal to Hα

s (or to Hα
s ∪ Ls) when cs ≡2 ps (or cs ̸≡2 ps,

respectively). Thus, due to Lemma 6, Und retains the global guarantees.
This completes the induction step for sol and the proof.

Correctness is then the special case when sol is called with cs = ⊤α, where
α≜ pr(⅁) mod 2, and full precision, i.e. bα = |⅁|, for all α ∈ B.

Theorem 2. When sol is called with the initial state sI , i.e. with cs = ⊤αI
,

where αI ≜ pr(⅁) mod 2, and full precision bα = |⅁|, for all α ∈ B, then, after
sol returns, r−1(⊤αI

) ∪ u−1(⊤αI
) is the winning region of player αI .

The theorem immediately follows from the previous lemma since the initial
state has full precision and, therefore, the guarantees are not bounded. The
assignment of the winning regions is due to the fact that r−1(⊤0) and r−1(⊤1)
contain dominions of the respective players and are closed under attractor by our
global guarantees. It is also clear that u−1(⊤αI

) can only be filled in the final
call of Und, such that r−1(⊤αI

) ∪ u−1(⊤αI
) contains all dominions (as the bound

does not exclude any) of Player αI , but does not intersect with any dominion
(as the bound again does not include any) dominion of Player αI . Note that
the wining region of Player 0 is simply the complement of the winning region of
Player 1.

It is interesting to note an algorithmic difference between the parts of the
winning regions in the dominions r−1(⊤0) and r−1(⊤1), and the rest of the winning
regions of both players. The two sets are computed constructively, and winning
strategies are simply the contribution of attractor strategies. This is not the case
for the remainder of the winning regions, as their calculation is not constructive.

As a hybrid between Priority Promotion and Parys’ approach, the algorithm
retains the quasi-polynomial bound of Parys and the practical efficiency of
Priority Promotion from [26, 27, 28]. Our argument is exactly the same as Parys’
(end of Section 4 of [59]): we use 2 parameters, h for the number of priorities,
and l = 2⌊log2(n)⌋+ 1 for the bounds, where n is the number of positions. We
estimate the number of times sol is called, excluding the trivial calls that return
immediately (at Line 2) because we run out of priorities or bounds, by R(h, l). If
h = 0, then we have run out of priorities (p = ⊥), and R(h, l) = 0. If l = 0, then
we have run out of bounds (b0 = 0 or b1 = 0, with the other value being 1). As
argued in Section 4 of [59], we can estimate R(h, l) ≤ 2nl

(
h+l
l

)
− 1. Therefore,

since the cost of all operations is linear in the size of the game, and since l is
logarithmic in the number of positions, this provides a quasi-polynomial running
time.

7. Experimental Evaluation

The practical effectiveness of the algorithms presented here, namely RPP
and HPP, has been assessed by means of an extensive experimentation on both
concrete and synthetic benchmarks. The algorithms have been incorporated in
Oink [64], a tool written in C++ that collects implementations of several parity

29



game solvers proposed in the literature, including some of the known quasi-
polynomial ones. We shall compare solution times against the quasi-polynomial
solvers SSPM [51], QPT [50], and the improved version of Parys’ algorithm
PAR [58], as well as the original version of the best exponential solver classes,
namely the recursive algorithm ZLK from [30] and the original priority promotion
PP [27], whose superiority in practical contexts is widely acknowledged1 (see
e.g., [68, 64]).

The results give a simple argument for why and when to use this algorithm2.
The first question is why one should use a QP algorithm. The answer to
that question is quite simple: it is not hard to produce pathological cases for
exponential time solvers. For complex games, it is well known that even the most
efficient solvers in practice, i.e. ZLK and PP [42, 24, 69, 44], take exponential
time, while HPP has a quasi-polynomial worst case complexity. To show this
behaviour, we have evaluated these two solvers, PP and ZLK, with HPP and the
improved version of Parys’ algorithm PAR, a quasi polynomial version of ZLK, on
the worst case family developed for the approaches based on quasi-dominions [24].
The results are reported in Table 1. Clearly the complex infrastructure required
by the HPP can pay off in terms of running time, while PAR does not outperform
ZLK on these small examples.

Worst Case PP PAR ZLK HPP

Index Nodes Time Iterations Time Iterations Time Iterations Time Iterations

10 88 0.00 11267 0.00 12750 0.00 1295 0.00 69
15 170 0.18 524294 0.21 502439 0.00 10175 0.00 177
20 278 7.70 22020104 4.54 9561994 0.03 133631 0.00 339
25 410 - - 51.13 82520213 0.17 796671 0.00 879
30 568 - - - - 1.99 8863743 0.00 1217
35 750 - - - - 11.25 47120383 0.01 2125
40 958 - - - - - - 0.02 2952

Table 1: Solution times in seconds on the worst case family [24].

The reason for why most QP algorithms should not be used in practice
becomes evident when the algorithms are run on Keiren’s family of (for current
solvers) simple benchmarks [70]. This set of benchmarks comprises a number
of concrete verification problems, ranging from model-checking to equivalence-
checking and decision problems for different temporal logics. They can be divided
in the following four categories.

1Variations of Zielonka’s algorithm [65] as well as of Priority Promotion approaches [26,
27, 28] (including Tangle Learning [66] and Justification [67] based approaches), who share
the same basic data structure and promotion principles, are available. Their performance on
benchmarks does not vary significantly. We therefore went with the original Parity Promotion
approach to compare the principle performance.

2Experiments were carried out on a 64-bit 3.9 GHz Intel quad-core machine, with i5-6600K
processor and 16GB of RAM, running Ubuntu 18.04 with Linux kernel version 4.15.0. Oink
was compiled with gcc 7.4.

30



Model-checking benchmarks. The first group contains 313 games, with size
up to in the order of magnitude of 107 positions. It includes a number of different
verification problems. A first set contains encodings of a variety of communi-
cation protocols from [71, 72, 73, 74]: the alternating bit protocol, the positive
acknowledgement with retransmission protocol, the bounded retransmission
protocol, and the sliding window protocols. The protocols are parameterised
with the number of messages to send and, when applicable, the window size. The
set also contains verification problems for the cache coherence protocol of [75]
and the wait-free handshake register of [76], as well as the classic elevator and
towers-of-Hanoi benchmarks from [77]. The verification tasks under analysis
cover fairness, liveness and safety properties. A second set, instead, contains
encodings of two-player board games, such as Clobber, Domineering, Hex, Oth-
ello, and Snake, all parameterised by their board size. Here, the existence of a
winning strategy for the game is the property considered. The encoding into
parity games results in games with very few priorities: up to 4 in some cases.
Equivalence checking benchmarks. This group contains 216 games encoding
equivalence tests between processes. The verification problems test various forms
of process equivalences, such as strong, weak and branching bisimulation, as well
as branching simulation. Most of the processes are the ones already considered
in the model-checking benchmarks. The encoding into parity games results in
games with at most two priorities, hence the only relevant measure of difficulty
is the size, again reaching O(107) positions for the bigger instances.
Decision problem benchmarks. The third group contains encodings of
satisfiability and validity problems for formulae of various temporal logics: LTL,
CTL, CTL*, PDL and the µ-Calculus, and comprises 192 games. The
maximal size of a benchmark is around 3 · 106 positions. The parity games
encoding have been obtained with the tool MLSolver [78]. The situation here
is more interesting, since these concrete problems feature a higher number of
priority, up to 20 in few cases. Hence, unlike the previous two groups, these
benchmarks allow us to stress a bit more the scalability of the solution algorithms
w.r.t. the increase in priorities.
PGSolver. This group contains 291 synthetic benchmarks, corresponding to
known families of hard cases for specific solvers and randomly generated ones.
The sizes and number of priorities vary significantly, depending on the specific
class of games.

Table 2 reports the results of the experiments for all the solvers considered
in the analysis, divided by class of benchmarks3. For each solver, the total
completion time, the average time per benchmark and the percentage of timed-
out executions are given. We set a timeout of 10 seconds for all the benchmarks,
except for the equivalence-check class, for which 40 seconds is used instead. As
expected, the exponential solvers perform better on all the classes, with PP

3The benchmarks were run by issuing the following OINK commands: oink –no-single
–no-loops –no-wcwc GameName SolverName; where solvers are: ZLK, NPP, RPP, SSPM,
QPT, ZLKQ.

31



Exponential Quasi Polynomial

Benchmarks ZLK PP RPP SSPM QPT PAR HPP

Tot. Time 27.16 20.12 53.66 >849.01 >1259.84 42.38 64.21
Model-Ch. Avg. Time 0.08 0.06 0.17 >2.71 >4.02 0.13 0.2

TimeOut 0% 0% 0% 22% 36.4% 0% 0%

Tot. Time 202.95 137.92 242.32 >2681.33 >3139.85 208.3 280.81
Equiv. Ch. Avg. Time 0.94 0.63 1.12 >12.41 >14.53 0.93 1.3

TimeOut 0% 0% 0% 28.2% 27.3% 0% 0%

Tot. Time 13.20 11.75 13.27 >360.8 >853.64 66.85 14.27
Decision Prb. Avg. Time 0.07 0.06 0.07 >1.87 >4.44 0.35 0.07

TimeOut 0% 0% 0% 11% 26.5% 0% 0%

Tot. Time 1.54 2.21 2.89 >3615.22 >4069.12 8.62 4.04
PGSolver Avg. Time 0.005 0.007 0.009 >12.42 >13.98 0.03 0.01

TimeOut 0% 0% 0% 78% 92.4% 0% 0%

Table 2: Solution times in seconds on Keiren’s benchmarks (1012 games).

taking the lead most of the time. SSPM and QPT both perform quite poorly,
between two and three orders of magnitude worse than the other solvers, and
do not seem to scale beyond the simplest instances, as also evidenced by the
high number of timeouts. Both PAR and HPP, instead, perform relatively well
in all the benchmarks, being able to solve all the instances without incurring
any timeouts and maintaining a short distance from the exponential solvers
performance-wise. PAR has a slight edge over HPP on the model-checking
and equivalence checking problems, both of which feature a very low number of
priorities, though the time advantage on average is typically negligible. On the
other hand, when the number of priorities increases, like in the decision problems,
the situation reverses and HPP takes the lead over PAR and practically matches
the performance of the exponential solvers. We can observe the same behaviour
also for the non-bounded recursive version RPP, whose performance relies less
on the number of priorities, so that its advantage increases with a rising number
of priorities. This seems to suggest that HPP may scale better w.r.t. the number
of priorities in the games. To further investigate this behaviour we decided to
perform additional experiments.

We then tried to assess scalability w.r.t. the number of positions and priori-
ties, so as to evaluate how sensitive the solvers are to variations of those two
parameters. To this end, we set up two types of synthetic benchmarks. The first
kind of benchmarks keeps the number of priorities fixed and only increases the
size of the underlying graph, while the second one maintains a linear relation
between positions and priorities. Here we drop both SSPM and QPT, since
they could not solve any of these benchmarks.

Figure 5 reports the solution times of the quasi polynomial solvers on 10
clusters, each composed of 100 randomly generated games, of increasing size
varying from 104 to 105. Each point corresponds to the total time to solve all

32



104 2 · 104 4 · 104 6 · 104 8 · 104 105
0
1
2
3
4
55

Number of positions

100

500

900

1,300

1,700

T
im

e
(s
ec
)

HPP
PAR
RPP
PP
ZLK

104 2 · 104 4 · 104 6 · 104 8 · 104 105
0
1
2
3
4
55

Number of positions

100

500

900

1,300

1,700

T
im

e
(s
ec
)

HPP
PAR
RPP
PP
ZLK

Figure 5: Results on random games with linear (on the left) and fixed (on the right)
number priorities.

33



the games in the cluster4. On the top graph the number of priorities grows
linearly with the positions, i.e., equal to n

4 , with n the number of positions. On
the bottom graph, instead, all the games have 500 priorities. In both cases,
the timeout was set to 25 seconds. In these experiments, HPP and PAR are
tested together with the exponential solvers. The results seem to confirm what
we already observed with the decision procedure benchmarks of the previous
subsection. HPP definitely scales very well w.r.t. the number of priorities, as
opposed to PAR, which is very sensitive to this parameter and starts hitting the
timeout already on the smallest instances. HPP, indeed, behaves very much
like the exponential solvers, none of which seems to be particularly sensitive to
this parameter in practice, despite requiring time exponential in the number of
priorities in the worst case.

What seems to emerge from the experimental analysis is that HPP behaves
quite nicely in practice, competing with the leading exponential solution algo-
rithms. The algorithmic overhead that guarantees its quasi-polynomial upper
bound does not seem to impact the performance in any meaningful way. This is
in contrast to what happens for all the other quasi-polynomial solvers, which do
not scale with the number of positions and/or the number of priorities. This
bodes well for the applicability of the hybrid approach in more challenging
practical contexts, such as deciding temporal logic properties or solving reactive
synthesis problems, where the number of priorities is typically higher.

Thus, HPP should be used when the game is hard; for this, it should have
some structure (as opposed to be essentially random) as well as a high number
of priorities, as the used advanced data structure only kicks in when the number
of priorities is higher than log(n).

The excellent performance of the basic interplay between the two parts of the
data structure invites exploring the limits of this approach. For example, one
could refine the interplay between these parts in our algorithm, by extracting
the guarantees on the bounds provided upon return instead of the guarantees
required when a call is made.

As a final remark regarding the computation of the strategy, a very relevant
question in reactive synthesis applications, we have observed that, in all the
experiments we conducted, the final undetermined region is always empty. This
means that, in practice, the winning strategies of the two players are always
complete.

8. Discussion

We have combined two generalisations of the classic recursive algorithm: the
quasi-polynomial recursion scheme of Parys, which relies on the local spread
of imperfect guarantees, and a Priority Promotion scheme, which relies on
identifying and realising the global potential of perfect guarantees. That these

4The instances were generated by issuing the following OINK command for top graph
games: rngame n n/4 2 10; bottom graph games: rngame n 500 2 10

34



improvements can be synthesised bodes well, as it promises to perfectly join the
advantages of both schemes, and the first experimental data collected suggests
that the algorithm lives up to this promise.

Acknowledgments

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 101032464.
F. Mogavero acknowledges a partial support by GNCS 2020 project “Ragiona-
mento Strategico e Sintesi Automatica di Sistemi Multi-Agente”. M.Benerecetti
and F.Mogavero acknowledges a partial support by GNCS 2024 project “Certifi-
cazione, Monitoraggio, ed Interpretabilita’ in Sistemi di Intelligenza Artificiale”.
The work was supported by EPSRC grants EP/P020909/1 and EP/X017796/1.

The authors would like to thank the anonymous reviewers for the insightful
comments and suggestions (in particular regarding the experimental analysis on
the strategy coverage) that helped to considerably improve the earlier version of
the manuscript.

35



Appendix A. Properties of the auxiliary functions for Section 6

Lemma 9. Given a strongly-maximal hybrid state s ∈ StS, the functions
NextPr(s) and Half(s) return a maximal hybrid state ŝ ∈ StM such that ŝ ≺ s.

Proof. Let s ≜ ((r, p), (u, b0, b1), c) be a strongly-maximal hybrid state. For
function NextPr, let ŝ = NextPr(s) be the result obtained by calling the function
NextPr on s. Due to Line 2 of Algorithm NextPr, ŝ = ((rs, q), (us, b0s, b1s), ps)

where q = max(rng
(
r
(<ps)
s

)
) by Line 1. Consequently, trivially holds Condition 1a

and 1d of Definition 7 and that rs is a region function, us is a promotion function,
ps is a priority, and bα for α ∈ B are two integers. Moreover, clearly q ∈ [⊥, ps[
and, therefore, also q is a priority and both {v ∈ dom(us) | us(v) < ps} and
u−1
s (⊤α), where α ≜ pr(⅁) mod 2, are equal to ∅ as required by Condition 1b

of the same definition. In addition, since Hβ
s = Hβ

ŝ ∪ r−1(q) and Hβ
ŝ = Hβ

s, with
β = q mod 2, it also follows Condition 1c. Finally, to prove that ŝ is maximal
it suffices to observe that Hα

ŝ = Hα
s ∪ Rs and Hα

ŝ = Hα
s. Consequently, since s

is strongly-maximal it holds that Rs is α-maximal w.r.t. Ls and, therefore, Hα
ŝ

is α-maximal as well. To conclude, if Rs ̸= ∅ trivially we have that Lŝ ⊂ Ls,
otherwise we have that Lŝ = Ls and pŝ = q < ps. In both cases we can have
that ŝ ≺ s.

We can now focus on Half function. Let us consider ŝ as the argument of
function NextPr at Line 2 of Algorithm Half. Due to Line 1, we have that
ŝ = ((r, p), (u, b̂0, b̂1), c), where b̂0 = ⌊ b0s

1+α⌋ and b̂1 = ⌊ b1s
2−α⌋. It is easy to observe,

by the fact that s is a strongly-maximal hybrid state and that both b̂0 and b̂1 are
integers, that ŝ is a strongly-maximal hybrid state as well. Hence, Half returns
NextPr(ŝ) that in turn returns a new maximal hybrid state s′ ∈ StM for which
s′ ≺ ŝ.

Lemma 10. Given a hybrid state s ∈ St, the procedure Maximise(s) modifies
in-place s into a maximal hybrid state ŝ ∈ StM such that ŝ ≼ s.

Proof. Let s≜((r, p), (u, b0, b1), c) be an hybrid state and ŝ≜((̂r, p̂), (û, b̂0, b̂1), ĉ) =
Maximise(s) the modified state obtained by computing the functionMaximise on s.

It is easy to see that p̂ = p, ĉ = c, and b̂α = bα for α ∈ B. Moreover, due to Line
3 of Algorithm Maximise, it holds that X ⊆ Ls ∪Us ⊆ {v ∈ dom(pr) | pr(v) ≤ ps}
while, due to Line 4, we have that q ≥ p. As a consequence, by Lines 6 and
8, r̂ is a promotion function. Furthermore, from the observation that in case
q = ⊤β , with β ∈ B, it necessarily holds that α ≡2 β, we can also conclude
that, by Lines 7 and 9, û is a promotion function as well. To prove that r̂ is
a region function, let us consider again the case in which q = ⊤β with β ∈ B.
Now, since α ≡2 β, the set X corresponds to the β-attractor of Ls ∪ Us by
Line 3. Once X is merged to r−1(⊤β), by Line 6, it is obvious that r−1(⊤β) is
still a β-dominion due to the fact that the β-attractor of a β-dominion is a
β-dominion as well. We can now consider q < ⊤β for any β ∈ B. Let us first
assume that at Line 2 α = αs. Two cases may arise: q ≡2 α or q ̸≡2 α. In the

36



first case, due to Lines 5-6, we have that ∆α
r̂ = ∆α

r ∪X which is clearly a quasi
α-dominion since X corresponds to the α-attractor of Ls, while ∆α

r̂ = ∆α
r \ X

is a quasi α-dominion. Hence, r̂ is a quasi dominion function. Finally, clearly
X does not belong to escα(Hα), since Player α has a strategy to attract every
position v ∈ X to r−1(q), from which the opponent can only escape through
positions having priority q′ ≥ q and congruent to the parity of q. Summing up,
the resulting r̂ is a region function and due to the fact that the priority function
pr is always a region function, we can conclude that also after Line 11 r̂ is a
region function. On the other hand, if q ̸≡2 α, we can easily conclude that r̂ is
a region function due to Lines 5, 8, and 11. When, instead, at Line 2 α ≠ αs

and the priority selected at Line 4 has the same parity as α, the proof that r̂ is
a region function is equivalent to the one provided above for the case in which
q ̸≡2 α and α = αs. Similarly, when q ̸≡2 α the proof corresponds to the one
provided for the case in which q ≡2 α and α = αs. To prove Condition 1a of
Definition 7 it suffices to observe that whenever X is merged to r (resp. u), it is
removed from u (resp. u) due to Lines 6-7 and 8-9, while the operation at Line
11 does not change dom(r), since Rs is already stored in r. Moreover, due to
Line 4, q refers to a priority in the domain of r or u, hence also Condition 1d
holds. Condition 1b, instead, follows form the fact that q ≥ p and q = ⊤β

with β ∈ B only if α ≡2 β. Therefore, it holds that û−1(⊤α) = u−1(⊤α), where
α ≜ pr(⅁) mod 2, and {v ∈ dom(û) | û(v) < p} = {v ∈ dom(u) | u(v) < p} which
are all empty. It remains to prove Condition 1c. Since s is a hybrid state, it
holds that Us and every v ∈ ∆α

u cannot be directly attracted by Rs and more in
general by Ls, due to Condition 1c. In addition, by Lines 5 and 9, the domain
of u only increases when the priority selected at Line 4 has parity α. However,
the positions of X merged in this case are not part of escα(Hα

ŝ) since X has been
attracted to dom(us) ∩Hα

s and, therefore, Player α has a strategy to reach this
set from X. The maximality of ŝ is a trivial consequence of Line 3, together with
the observation that the operation at Line 11 cannot affect the maximality of
the state. Finally, since dom(û) ⊇ dom(u) and dom(̂r) ⊇ dom(r), while p̂ = p, we
can also conclude that ŝ ≼ s.

Lemma 11. Given a promotable hybrid state s ∈ StP, the procedure Promote(s)
modifies in-place s into a maximal hybrid state ŝ ∈ StM such that ŝ ≺ s.

Proof. Let s≜ ((r, p), (u, b0, b1), c) be a promotable hybrid state and

ŝ≜ ((̂r, p̂), (û, b̂0, b̂1), ĉ) = Promote(s) the modified state obtained by computing

the function Promote on s. It is easy to see that p̂ = p, ĉ = c, and b̂α = bα for
α ∈ B. At Line 1 of Algorithm Promote the two best escape priorities (pr, pu)
from Rs to r and u are computed by the function bep. Due to the definition of
bep and the fact that Rs is an α-dominion in ⅁s, it follows that both pr and pu
are priorities higher than p. Moreover, by the same definition of bep and the
fact that s is promotable, it also holds that pr ≡2 p, while pu ̸≡2 p if pu < ⊤αs .
Now, two cases may arise: pr ≤ pu or pr > pu. In the first case, by Line 2 and 3,
we have that û = u and r̂ = r[Rs 7→ pr]. Hence, û is a promotion function and
Condition 1b of Definition 7 is satisfied. Moreover, since Rs ⊆ r(≤p), we have

37



that dom(̂r) = dom(r) and, therefore, also the two requirements of Condition 1a
are guaranteed. By the definition of bep, pr belongs to the domain of r or is
equal to the pseudo priority ⊤. In both cases Condition 1d still holds. Finally,
since pr ≡2 p, it follows that Hβ

ŝ = Hβ
s for any β ∈ B. Hence, Condition 1c is

satisfied. At this point, it remains to prove that r̂ is a region function. Now,
since Rs ⊆ r(≤p) and pr > p, r̂ is clearly a promotion function. In addition, it is
also a quasi dominion function as a consequence of the fact that Hβ

ŝ = Hβ
s for

any β ∈ B. Moreover, being r a region function, it holds that pr(v) ≥ p and
pr(v) ≡2 α for each position v in escα(∆α,p

r ). However, due to Line 1 we have that
bepα⅁(Rs, rs) = pr, which implies that pr(v) ≥ pr and pr(v) ≡2 α for each position
v in escα(∆α,p

r ). Hence, r̂ is a region function. Finally, since s is promotable,
it follows that Hα

ŝ = Hα
s ∪ Rs is α-maximal, while Hα

ŝ = Hα
s is α-maximal and,

therefore, ŝ is maximal. To conclude, being s promotable, it necessarily holds
that Rs ̸= ∅, which implies that Lŝ ⊂ Ls. Hence, ŝ ≺ s. Let us now consider
the case in which pr > pu. Due to Line 2 and 4 of Algorithm Promote we have
that r̂ = r \ Rs and û = u[Rs 7→ pu]. Conditions 1a and 1b follow from the
fact that ⊤αs

> pu > p and Rs ⊆ r(≤p), which also imply that û is a promotion
function. In addition, since Rs ≜ r−1(p), it holds that ∆α,p

r̂ = ∆α,p
r \ Rs, hence

r̂ is a region function. By the definition of bep, pr belongs to the domain of u,
hence Condition 1d still holds. To prove Condition 1c, instead, let us observe
that Rs is an α-dominion in ⅁s and, consequently, escα(Rs) ⊆ Hα

s. Moreover,
we have that pu ̸≡2 p, hence, as a consequence of the fact that û = u[Rs 7→
pu], it holds that Rs ∈ ∆α,p

û ⊆ Hα
ŝ. In addition, it suffice to observe that

{v ∈ dom(̂r) | r̂(v) > p} = {v ∈ dom(r) | r(v) > p} and {v ∈ dom(û) | û(v) ≥ p} =
{v ∈ dom(u) | u(v) ≥ p} ∪ Rs, with Rs ̸= ∅, to conclude that ŝ ≺ s. Finally,
similarly to the previous case, it can be proved that both Hα

ŝ = Hα
s ∪ Rs is

α-maximal, while Hα
ŝ = Hα

s is α-maximal, as a direct consequence of the fact that
s is promotable.

Lemma 12. Given a strongly-maximal hybrid state s ∈ StS, the function Und(s)
returns a pair (̂r, û) ∈ Rg×Pf of a region function r̂ and a promotion function û

such that: 1) r
(>ps)
s ⊆ r̂(>ps); 2) u

(>ps)
s ⊆ û(>ps); 3) ŝ = ((̂r, cs), (û, b0, b1), q)) is

a promotable hybrid state if ŝ is closed and, an hybrid state otherwise, for all
priority q ∈ pr such that cs < q ≤ min(rng(rs ∪ us

>cs)), and b0, b1 ∈ N.

Proof. Let s≜ ((r, p), (u, b0, b1), c) be a strongly-maximal hybrid state and (̂r, û)
the result obtained by computing the function Und on s. Moreover, let ŝ =
((̂r, c), (û, b0, b1), q) the composition of state s and the pair (̂r, û). Two cases may
arise: c ≡2 α or c ≡2 αs. In the first case, by Lines 1-2 of Algorithm Und, we
have that r̂ = r and û = u[Us 7→ c], where U ≜ u−1(p). By the fact that the
priorities of the states are strictly decreasing we have that c > p. Moreover,
it holds that dom(û) = dom(u) and, therefore, r̂ is a region function, û is a
promotion function, both Points 1) and 2) of the Lemma and Conditions 1a,
1b, and 1d of Definition 7 are satisfied for the composed state ŝ. To prove
Condition 1c it suffices to observe that due to Line 3 and the fact that c ≡2 αs, it
holds that Hβ

ŝ = Hβ
s for any β ∈ B. In particular, we have that ∆αs,q

r̂ = ∆αs,q
r for

38



all priorities q ≥ p, ∆αs,q
û = ∆αs,q

u for all priorities q > c and ∆αs,c
û = ∆αs,c

u ∪Us.
Finally, if ŝ is closed, it necessarily holds that ŝ is αs-maximal and that Rŝ

is α-maximal as a direct consequence of the fact that s is strongly-maximal
and r(>p)∧(<cs) = ∅. Hence, ŝ is also promotable. We can now focus on the
case in which c ≡2 αs. By Lines 1 and 3-4 of Algorithm Und we have that
û = u(≥c)[Ls 7→ c] and r̂ = r(≥c)[v ∈ Us 7→ pr(v)]. Now, it is easy to see that also
in this case both Points 1) and 2) of the Lemma and Conditions 1a, 1b, and 1d
are satisfied for the composed state ŝ, since L≜ dom

(
r≤p

)
and U≜ u−1(p) and,

it also holds that û is a promotion function and r̂ is a region function due to
the fact that the priority function pr is always a region function. Condition 1c,
instead, follows from the fact that s is a strongly-maximal hybrid state and,
therefore, it holds that escα(Ls) ⊆ Hαs

s . By the same Condition 1c, we have that
escαs(∆αs,p

u ) ⊆ preαs(∆αs,p
r \Ls) and, consequently, for each priority q > p the set

u−1(q) cannot reach Us that, due to Line 5, is reset to the values of the priority
function pr. The latter observation also implies that, if ŝ is closed, ŝ is also
αs-maximal. Indeed, when ŝ is closed, it holds that player αs cannot attracts
Rŝ and since Lŝ ⊇ Rŝ we can conclude that Hαs

ŝ \ Lŝ is αs-maximal w.r.t. Lŝ.
Finally, similarly to the previous case, Rŝ turns out to be α-maximal as a direct
consequence of the fact that s is strongly-maximal and that r(>p)∧(<cs) = ∅.
Hence, ŝ is also promotable.

Lemma 13. Given a maximal hybrid state s ∈ StM, the function sol(s) ter-
minates and returns a pair (̂r, û) ∈ Rg × Pf of a region function r̂ and a pro-

motion function û such that: 1) r
(>ps)
s ⊆ r̂(>ps); 2) u

(>ps)
s ⊆ û(>ps); 3) ŝ =

((̂r, cs), (û, b0, b1), q) is a promotable hybrid state if ŝ is closed and, an hybrid
state otherwise, for all priorities q ∈ pr such that cs < q ≤ min(rng(rs ∪ us

>cs)),
and b0, b1 ∈ N. Moreover, the procedure hsol(s) modifies in-place s into a
strongly-maximal hybrid state ŝ ∈ StS such that ŝ ≼ s.

Proof. Let ŝ ≜ sol(s) be the result obtained by computing sol on a maximal
hybrid state s≜ ((r, p), (u, b0, b1), c). The proof proceeds by induction, where in
the base case we have that p = ⊥ or bαs = 0. In this case, by Line 1 and 2 of
Algorithm 5 we have that ŝ = ((r, cs), (u, b0, b1), q), which trivially satisfies all
the requirements. Therefore, let us now consider an arbitrary recursive call of
sol where p > ⊥ and bαs

> 0. At Line 3 of sol, the procedure hsol is called on
the state s. Consequently, at Line 1 of Algorithm 9, the set Rs is maximised by
computing its αs-attractor atr

αs

⅁s
. It is not hard to show that the new state s is

still a strongly-maximal hybrid state greater or equal to the old one, w.r.t. the
ordering of Definition 7. Then, two cases may arise at Line 4 of Half: s is open or
closed. In the first case, at Line 5 a recursive call of sol is performed on the state
generated by Half. Now, due to the fact that s is a strongly maximal hybrid state
and by Lemma 3, it follows that the resulting state of Half(s) is a maximal hybrid
state greater or equal to the input s, w.r.t. the ordering of Definition 7. Hence,
by external induction, we have that s = ((̂r, p), (û, b0, b1), c) is a hybrid state
and, by Point 1) and 2) it is also greater or equal to the previous s, w.r.t. the
ordering of Definition 7. At this point (Line 6 of Half), s can be open or closed.

39



Let us first consider again the case in which it is open. By Lemma 4 and Line 7,
the function Maximise modifies s into a maximal hybrid state that is greater or
equal to the previous s, w.r.t. the ordering of Definition 7. On the other hand,
when s is closed, by external induction it holds that s is promotable and, by
Lemma 5 the function Promote modifies s into a maximal hybrid state greater
than the previous one w.r.t. the ordering of Definition 7. This last case also
apply when s is closed at Line 4. Now, since the modified state by Promote(s) is
always greater than s, w.r.t. the ordering of Definition 7, we can conclude that
function hsol only ends when the function Maximise modify the input hybrid
state such that there is no progress w.r.t. the ordering of Definition 7, otherwise
hsol starts a new iteration due to the Loop at Line 1. By the fact that the
state space is finite and that it starts a new iteration only if there is a progress
in the ordering it is easy to prove that hsol always terminates. Observe that,
when s′ ̸≺ s where s′ is the state modified by Maximise(s), it holds that s′ is
also strongly-maximal and, therefore, hsol returns a strongly maximal hybrid
state. We can now go back to Line 3 of Algorithm 5 where the modified state s
is strongly maximal as observed above. Now, by Lemma 3 the input state of sol
at Line 5 is maximal. Hence, by external induction, the modified state composed
of the results of Line 5 is s = ((̂r, p), (û, b0, b1), c) that is a hybrid state and, by
Point 1) and 2) it is also greater or equal to the previous state stored as ŝ, w.r.t.
the ordering of Definition 7. Similarly to the proof for hsol, the state s can be
open or closed. In the first case, two more cases may arise, indeed, if s is open,
then by Lemma 4 and Line 7, the function Maximise modifies s into a maximal
hybrid state that is greater or equal to the previous s, w.r.t. the ordering of
Definition 7. On the other hand, if s is closed, then by external induction it
holds that s is promotable and, by Lemma 5 the function Promote modifies s
into a maximal hybrid state greater than the previous one w.r.t. the ordering of
Definition 7. Thus, at Line 9, in case s ≺ ŝ, where ŝ is the state stored before the
recursive calls at Line 4, hsol is called on a maximal state and, as proved above,
the modified resulting state is strongly maximal. Otherwise, as observed in the
proof for hsol, s is already strongly-maximal. As a consequence, by Lemma 6
and Line 10, we can conclude that sol returns a pair of region function and
priority function (̂r, û) such that ŝ = ((̂r, cs), (û, b0, b1), q) is a promotable hybrid
state if ŝ is closed and, an hybrid state otherwise, for all priorities q ∈ pr such
that cs < q ≤ min(rng(rs ∪ us

>cs)), and b0, b1 ∈ N.

40



References

[1] E. Emerson, C. Jutla, A. Sistla, On Model Checking for the muCalculus
and its Fragments, Theoretical Computer Science 258 (1-2) (2001) 491–522.

[2] E. Emerson, C. Lei, Efficient Model Checking in Fragments of the Propo-
sitional muCalculus, in: Logic in Computer Science’86, IEEE Computer
Society, 1986, pp. 267–278.

[3] M. Vardi, Reasoning about The Past with Two-Way Automata, in: Interna-
tional Colloquium on Automata, Languages, and Programming’98, LNCS
1443, Springer, 1998, pp. 628–641.

[4] N. Piterman, From Nondeterministic Büchi and Streett Automata to De-
terministic Parity Automata, in: Logic in Computer Science’06, IEEE
Computer Society, 2006, pp. 255–264.

[5] S. Schewe, Tighter Bounds for the Determinisation of Büchi Automata, in:
Foundations of Software Science and Computational Structures’09, LNCS
5504, Springer, 2009, pp. 167–181.

[6] E. Grädel, W. Thomas, T. Wilke, Automata, Logics, and Infinite Games:
A Guide to Current Research, LNCS 2500, Springer, 2002.

[7] O. Kupferman, M. Vardi, Weak Alternating Automata and Tree Automata
Emptiness, in: Symposium on Theory of Computing’98, Association for
Computing Machinery, 1998, pp. 224–233.

[8] K. Chatterjee, T. Henzinger, N. Piterman, Strategy Logic, Information and
Computation 208 (6) (2010) 677–693.

[9] F. Mogavero, A. Murano, M. Vardi, Reasoning About Strategies, in: Founda-
tions of Software Technology and Theoretical Computer Science’10, LIPIcs
8, Leibniz-Zentrum fuer Informatik, 2010, pp. 133–144.

[10] F. Mogavero, A. Murano, G. Perelli, M. Vardi, What Makes ATL* Decidable?
A Decidable Fragment of Strategy Logic, in: Concurrency Theory’12, LNCS
7454, Springer, 2012, pp. 193–208.

[11] M. Benerecetti, F. Mogavero, A. Murano, Substructure Temporal Logic, in:
Logic in Computer Science’13, IEEE Computer Society, 2013, pp. 368–377.

[12] D. Berwanger, E. Grädel, Fixed-Point Logics and Solitaire Games, Theoret-
ical Computer Science 37 (6) (2004) 675–694.

[13] D. Kozen, Results on the Propositional muCalculus, Theoretical Computer
Science 27 (3) (1983) 333–354.

[14] L. de Alfaro, T. Henzinger, R. Majumdar, From Verification to Control:
Dynamic Programs for Omega-Regular Objectives, in: Logic in Computer
Science’01, IEEE Computer Society, 2001, pp. 279–290.

41



[15] T. Wilke, Alternating Tree Automata, Parity Games, and Modal muCalcu-
lus, Bulletin of the Belgian Mathematical Society 8 (2) (2001) 359–391.

[16] S. Schewe, B. Finkbeiner, Satisfiability and Finite Model Property for the
Alternating-Time muCalculus, in: Computer Science Logic’06, LNCS 4207,
Springer, 2006, pp. 591–605.

[17] R. Alur, T. Henzinger, O. Kupferman, Alternating-Time Temporal Logic,
Journal of the ACM 49 (5) (2002) 672–713.

[18] S. Schewe, ATL* Satisfiability is 2ExpTime-Complete, in: International
Colloquium on Automata, Languages, and Programming’08, LNCS 5126,
Springer, 2008, pp. 373–385.

[19] A. Mostowski, Games with Forbidden Positions, Tech. rep., University of
Gdańsk, Gdańsk, Poland (1991).

[20] E. Emerson, C. Jutla, Tree Automata, muCalculus, and Determinacy, in:
Foundation of Computer Science’91, IEEE Computer Society, 1991, pp.
368–377.

[21] A. Martin, Borel Determinacy, Annals of Mathematics 102 (2) (1975) 363–
371.

[22] M. Jurdziński, Deciding the Winner in Parity Games is in UP ∩ co-UP,
Information Processing Letters 68 (3) (1998) 119–124.

[23] C. Calude, S. Jain, B. Khoussainov, W. Li, F. Stephan, Deciding Parity
Games in Quasipolynomial Time, in: Symposium on Theory of Comput-
ing’17, Association for Computing Machinery, 2017, pp. 252–263.

[24] M. Benerecetti, D. Dell’Erba, F. Mogavero, Solving Parity Games via
Priority Promotion, in: Computer Aided Verification’16, LNCS 9780 (Part
II), Springer, 2016, pp. 270–290.

[25] M. Benerecetti, D. Dell’Erba, F. Mogavero, A Delayed Promotion Policy for
Parity Games, in: Games, Automata, Logics, and Formal Verification’16,
EPTCS 226, 2016, pp. 30–45.

[26] M. Benerecetti, D. Dell’Erba, F. Mogavero, Improving Priority Promo-
tion for Parity Games, in: Haifa Verification Conference’16, LNCS 10028,
Springer, 2016, pp. 1–17.

[27] M. Benerecetti, D. Dell’Erba, F. Mogavero, Solving Parity Games via
Priority Promotion, Formal Methods in System Design 52 (2) (2018) 193–
226.

[28] M. Benerecetti, D. Dell’Erba, F. Mogavero, A Delayed Promotion Policy
for Parity Games, Information and Computation 262 (2) (2018) 221–240.

42



[29] R. McNaughton, Infinite Games Played on Finite Graphs, Annals of Pure
and Applied Logic 65 (1993) 149–184.

[30] W. Zielonka, Infinite Games on Finitely Coloured Graphs with Applications
to Automata on Infinite Trees, Theoretical Computer Science 200 (1-2)
(1998) 135–183.

[31] W. Ludwig, A Subexponential Randomized Algorithm for the Simple
Stochastic Game Problem, Information and Computation 117 (1) (1995)
151–155.

[32] A. Puri, Theory of Hybrid Systems and Discrete Event Systems, Ph.D.
thesis, University of California, Berkeley, CA, USA (1995).

[33] J. Vöge, M. Jurdziński, A Discrete Strategy Improvement Algorithm for
Solving Parity Games, in: Computer Aided Verification’00, LNCS 1855,
Springer, 2000, pp. 202–215.

[34] H. Björklund, S. Vorobyov, A Combinatorial Strongly Subexponential
Strategy Improvement Algorithm for Mean-Payoff Games, Discrete Applied
Mathematics 155 (2) (2007) 210–229.

[35] S. Schewe, An Optimal Strategy Improvement Algorithm for Solving Parity
and Payoff Games, in: Computer Science Logic’08, LNCS 5213, Springer,
2008, pp. 369–384.

[36] J. Fearnley, Non-Oblivious Strategy Improvement, in: Logic for Program-
ming Artificial Intelligence and Reasoning’10, LNCS 6355, Springer, 2010,
pp. 212–230.

[37] S. Schewe, A. Trivedi, T. Varghese, Symmetric Strategy Improvement, in:
International Colloquium on Automata, Languages, and Programming’15,
LNCS 9135, Springer, 2015, pp. 388–400.

[38] O. Friedmann, An Exponential Lower Bound for the Latest Deterministic
Strategy Iteration Algorithms, Logical Methods in Computer Science 7 (3)
(2011) 1–42.

[39] O. Friedmann, A Subexponential Lower Bound for Zadeh’s Pivoting Rule
for Solving Linear Programs and Games, in: Integer Programming and
Combinatorial Optimization’11, LNCS 6655, Springer, 2011, pp. 192–206.

[40] O. Friedmann, A Superpolynomial Lower Bound for Strategy Iteration
Based on Snare Memorization, Discrete Applied Mathematics 161 (10-11)
(2013) 1317–1337.

[41] T. van Dijk, G. Loho, M. Maat, The Worst-Case Complexity of Symmetric
Strategy Improvement, in: Computer Science Logic’24, LIPIcs 288, Leibniz-
Zentrum fuer Informatik, 2024, pp. 24:1–19.

43



[42] O. Friedmann, Recursive Algorithm for Parity Games Requires Exponential
Time, RAIRO - Theoretical Informatics and Applications 45 (4) (2011)
449–457.

[43] M. Benerecetti, D. Dell’Erba, F. Mogavero, Robust Exponential Worst Cases
for Divide-et-Impera Algorithms for Parity Games, in: Games, Automata,
Logics, and Formal Verification’17, EPTCS 256, 2017, pp. 121–135.

[44] M. Benerecetti, D. Dell’Erba, F. Mogavero, Robust Worst Cases for Parity
Games Algorithms, Information and Computation 272 (2020) 104501:1–31.

[45] U. Zwick, M. Paterson, The Complexity of Mean Payoff Games on Graphs,
Theoretical Computer Science 158 (1-2) (1996) 343–359.

[46] A. Browne, E. Clarke, S. Jha, D. Long, W. Marrero, An Improved Algorithm
for the Evaluation of Fixpoint Expressions, Theoretical Computer Science
178 (1-2) (1997) 237–255.

[47] M. Jurdziński, Small Progress Measures for Solving Parity Games, in:
Symposium on Theoretical Aspects of Computer Science’00, LNCS 1770,
Springer, 2000, pp. 290–301.

[48] S. Schewe, Solving Parity Games in Big Steps, Journal of Computer and
System Sciences 84 (2017) 243–262.

[49] M. Jurdziński, M. Paterson, U. Zwick, A Deterministic Subexponential
Algorithm for Solving Parity Games, SIAM Journal on Computing 38 (4)
(2008) 1519–1532.

[50] J. Fearnley, S. Jain, S. Schewe, F. Stephan, D. Wojtczak, An Ordered
Approach to Solving Parity Games in Quasi Polynomial Time and Quasi
Linear Space, in: SPIN Symposium on Model Checking of Software’17,
Association for Computing Machinery, 2017, pp. 112–121.

[51] M. Jurdziński, R. Lazic, Succinct Progress Measures for Solving Parity
Games, in: Logic in Computer Science’17, Association for Computing
Machinery, 2017, pp. 1–9.

[52] D. Dell’Erba, S. Schewe, Smaller Progress Measures and Separating Au-
tomata for Parity Games, Frontiers in Computer Science 4 (2022) 8:1–18.

[53] K. Lehtinen, A Modal mu Perspective on Solving Parity Games in Quasi-
Polynomial Time, in: Logic in Computer Science’18, Association for Com-
puting Machinery & IEEE Computer Society, 2018, pp. 639–648.

[54] P. Parys, Parity Games: Another View on Lehtinen’s Algorithm., in: Com-
puter Science Logic’20, LIPIcs 152, Leibniz-Zentrum fuer Informatik, 2020,
pp. 32:1–15.

44



[55] L. Daviaud, M. Jurdzinski, K. Thejaswini, The Strahler Number of a
Parity Game, in: International Colloquium on Automata, Languages, and
Programming’20, LIPIcs 168, Leibniz-Zentrum fuer Informatik, 2020, p.
123:1–19.

[56] P. Parys, Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time,
in: Mathematical Foundations of Computer Science’19, LIPIcs 138, Leibniz-
Zentrum fuer Informatik, 2019, pp. 10:1–13.

[57] W. Czerwinski, L. Daviaud, N. Fijalkow, M. Jurdzinski, R. Lazic, P. Parys,
Universal Trees Grow Inside Separating Automata: Quasi-Polynomial Lower
Bounds for Parity Games, in: Symposium on Discrete Algorithms’19, SIAM,
2019, p. 2333–2349.

[58] K. Lehtinen, S. Schewe, D. Wojtczak, Improving the Complexity of Parys’
Recursive Algorithm, Tech. rep., arXiv (2019).

[59] K. Lehtinen, P. Parys, S. Schewe, D. Wojtczak, A Recursive Approach
to Solving Parity Games in Quasipolynomial Time, Logical Methods in
Computer Science 18 (1) (2022).

[60] M. Benerecetti, D. Dell’Erba, M. Faella, F. Mogavero, From Quasi-
Dominions to Progress Measures, in: Automata Theory and Applications:
Games, Learning and Structures, World Scientific, 2023, pp. 159–199.

[61] M. Benerecetti, D. Dell’Erba, F. Mogavero, Solving Mean-Payoff Games
via Quasi Dominions, in: Tools and Algorithms for the Construction and
Analysis of Systems’20, LNCS 12079, Springer, 2020, pp. 289–306.

[62] M. Benerecetti, D. Dell’Erba, F. Mogavero, Solving Mean-Payoff Games via
Quasi Dominions, Information and Computation 297 (2024) 105151:1–25.

[63] M. Jurdziński, M. Paterson, U. Zwick, A Deterministic Subexponential Algo-
rithm for Solving Parity Games, in: Symposium on Discrete Algorithms’06,
SIAM, 2006, pp. 117–123.

[64] T. van Dijk, Oink: an Implementation and Evaluation of Modern Parity
Game Solvers, in: Tools and Algorithms for the Construction and Analysis
of Systems’18, LNCS 10805, Springer, 2018, pp. 291–308.

[65] Y. Liu, Z. D., C. Tian, An Improved Recursive Algorithm for Parity Games,
in: Theoretical Aspects of Software Engineering’14, IEEE Computer Society,
2014, pp. 154–161.

[66] T. van Dijk, Attracting Tangles to Solve Parity Games, in: Computer Aided
Verification’18, LNCS 10982, Springer, 2018, pp. 198–215.

[67] R. Lapauw, M. Bruynooghe, M. Denecker, Improving Parity Game Solvers
with Justifications, in: Verification, Model Checking, and Abstract Inter-
pretation’20, LNCS 11990, Springer, 2020, pp. 449–470.

45



[68] L. Sanchez, W. Wesselink, T. A. C. Willemse, A Comparison of BDD-
Based Parity Game Solvers, in: Games, Automata, Logics, and Formal
Verification’18, EPTCS 277, 2018, pp. 103–117.

[69] T. van Dijk, A Parity Game Tale of Two Counters, in: Games, Automata,
Logics, and Formal Verification’19, EPTCS 305, 2019, pp. 107–122.

[70] J. Keiren, Benchmarks for Parity Games, in: Fundamentals of Software
Engineering’15, LNCS 9392, Springer, 2015, pp. 127–142.

[71] C. Koymans, J. Mulder, A Modular Approach to Protocol Verification Using
Process Algebra, in: Applications of Process Algebra, Cambridge University
Press, 1990, pp. 261–306.

[72] V. Cerf, R. Kahn, A Protocol for Packet Network Intercommunication,
Transactions on Communications 22 (5) (1974) 637–648.

[73] J. Groote, J. van de Pol, A Bounded Retransmission Protocol for Large
Data Packets, in: American Mathematical Society Translations96, LNCS
1101, Springer, 1996, pp. 536–550.

[74] K. Bartlett, R. Scantlebury, P. Wilkinson, A Note on Reliable Full-Duplex
Transmission over Half-Duplex Links, Communication of the ACM 12 (5)
(1969) 260–261.

[75] R. Veldema, R. Hofman, R. Bhoedjang, C. Jacobs, H. Bal, Source-Level
Global Optimizations for Fine-Grain Distributed Shared Memory Systems,
in: Principles and Practice of Parallel Programming’01, Association for
Computing Machinery, 2001, pp. 83–92.

[76] W. Hesselink, Invariants for the Construction of a Handshake Register,
Information Processing Letters 68 (4) (1998) 173–177.

[77] O. Friedmann, M. Lange, Solving Parity Games in Practice, in: Automated
Technology for Verification and Analysis’09, LNCS 5799, Springer, 2009, pp.
182–196.

[78] O. Friedmann, M. Lange, A Solver for Modal Fixpoint Logics, Electronic
Notes in Theoretical Computer Science 262 (2010) 99–111.

46


	Introduction
	Preliminaries
	The Priority Promotion Approach
	Parys' Algorithm
	A Hybrid Algorithm
	Correctness and Complexity
	Experimental Evaluation
	Discussion
	Properties of the auxiliary functions for Section 6

