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Abstract

We propose a novel algorithm for the solution of mean-payoff games that
merges together two seemingly unrelated concepts introduced in the context of
parity games, namely small progress measures and quasi dominions. We show
that the integration of the two notions can be highly beneficial and significantly
speeds up convergence to the problem solution. Experiments show that the re-
sulting algorithm performs orders of magnitude better than the asymptotically-
best solution algorithm currently known, without sacrificing on the worst-case
complexity.

1. Introduction

In this article we consider the problem of solving mean-payoff games, namely
infinite-duration perfect-information two-player games played on weighted di-
rected graphs, each of whose vertexes is controlled by one of the two players.
The game starts at an arbitrary vertex and, during its evolution, each player can
take moves at the vertexes it controls, by choosing one of the outgoing edges.
The moves selected by the two players induce an infinite sequence of vertexes,
called play. The payoff of any prefix of a play is the sum of the weights of its
edges. A play is winning if it satisfies the game objective, called mean-payoff ob-
jective, which requires that the limit of the mean payoff, taken over the prefixes
lengths, never falls below a given threshold ν.

Mean-payoff games have been first introduced and studied by Ehrenfeucht
and Mycielski (1979), who showed that positional strategies suffice to obtain
the optimal value. A slightly generalised version was also considered by Gur-
vich et al. (1988). Positional determinacy entails that the decision problem
for these games lies in NPTime ∩ CoNPTime due to Zwick and Paterson
(1996), and it was later shown to belong to UPTime ∩ CoUPTime by Jur-
dziński (1998), being UPTime the class of unambiguous non-deterministic poly-
nomial time. This result gives the problem a rather peculiar complexity status,

⋆This work is based on Benerecetti et al. (2020), which appeared in TACAS’20. A direct
application of the proposed approach to parity games is reported in Benerecetti et al. (2023).
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shared by very few other problems, such as integer factorisation by Fellows
and Koblitz (1992) and Agrawal et al. (2004) and parity games by Jurdziński
(1998). Despite various attempts of Gurvich et al. (1988); Zwick and Paterson
(1996); Pisaruk (1999); Dhingra and Gaubert (2006); Björklund and Vorobyov
(2007), no polynomial-time algorithm (in both the number of positions and the
representation-size of the maximal weights) for the mean-payoff game problem
is known so far.

A different formulation of the game objective allows to define another class of
quantitative games, known as energy games. The energy objective requires that,
given an initial value c, called credit, the sum of c and the payoff of every prefix
of the play never falls below 0. These games, however, are tightly connected
to mean-payoff games, as the two type of games have been proved to be log-
space equivalent by Bouyer et al. (2008). They are also related to other more
complex forms of quantitative games. In particular, unambiguous polynomial-
time reductions by Jurdziński (1998) exist from these games to discounted payoff,
see Zwick and Paterson (1996) and simple stochastic games, see Condon (1992).

Recently, a fair amount of work in formal verification has been directed to-
wards considering, besides correctness properties of computational systems, also
quantitative specifications, in order to express performance measures and re-
source requirements, such as quality of service, bandwidth and power consump-
tion and, more generally, bounded resources. Mean-payoff and energy games
also have important practical applications in system verification and synthe-
sis. Bloem et al. (2009) show how quantitative aspects, interpreted as penalties
and rewards associated with the system choices, allow for expressing optimal-
ity requirements encoded as mean-payoff objectives for the automatic synthesis
of systems that also satisfy parity objectives. With similar application con-
texts in mind, Boker et al. (2011) and Bohy et al. (2013) further contribute
to that effort, by providing complexity results and practical solutions for the
verification and automatic synthesis of reactive systems from quantitative speci-
fications expressed in linear time temporal logic extended with mean-payoff and
energy objectives. Further applications to temporal networks have been studied
by Comin and Rizzi (2015) and Comin et al. (2017). Consequently, efficient
algorithms to solve mean-payoff games become essential ingredients to tackle
these problems in practice.

Several algorithms have been devised in the past for the solution of the deci-
sion problem for mean-payoff games, which asks whether there exists a strategy
for one of the players that grants the mean-payoff objective. The very first
deterministic algorithm was proposed by Zwick and Paterson (1996), where it
is shown that the problem can be solved with O

(
n3 ·m ·W

)
arithmetic oper-

ations, with n and m the number of positions and moves, respectively, and W
the maximal absolute weight in the game. An indirect strategy improvement
approach, based on iteratively adjusting a randomly chosen initial strategy for
one player until a winning strategy is obtained, is presented by Schewe (2008),
which has an exponential upper bound. The algorithm by Lifshits and Pavlov
(2007), which runs in time O(n ·m · 2n · log2 W ), computes the “potential” of
each game position, which corresponds to the initial credit that the player needs
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in order to win the game from that position. Algorithms based on the so-
lution of linear feasibility problems over the tropical semiring have been also
provided by Allamigeon et al. (2014b,a, 2015). One of the best known deter-
ministic algorithm to date, which requires O(n ·m ·W ) arithmetic operations,
was proposed by Brim et al. (2011). They adapt to energy and mean-payoff
games the notion of progress measures of Klarlund (1991), as applied to parity
games by Jurdziński (2000). The approach was further developed by Comin
and Rizzi (2017) to obtain the same complexity bound for the optimal strat-
egy synthesis problem. A strategy-improvement refinement of this technique
has been introduced by Brim and Chaloupka (2012). Björklund et al. (2004),
instead, proposed a randomised strategy-improvement based algorithm requir-

ing min{O
(
n2 ·m ·W

)
, 2O(

√
n·logn)} arithmetic operations. Finally, it has been

recently proposed an algorithm for energy games (and therefore also for mean-
payoff games) based on progress measures whose number of arithmetic opera-
tions is O(min(m · n ·W, m · n · 2n/2 · log2 W )

)
by Dorfman et al. (2019). This

improvement of Brim et al. (2011) uses two new ideas: it predicts sequences of
update steps that would be performed repetitively in the original approach, and
applies the scaling technique introduced by Gabow and Tarjan (1991); Goldberg
(1995); Goldberg and Rao (1998). In particular the scaling algorithm halves all
weights in the game and solves the halved game recursively. Once the solution
of the halved game is returned, it is converted into a solution of the original
game. As stated by the authors, this scaling technique seems to be required
in order to use the first idea and obtain the exponential upper bound on the
number of positions.

Our contribution is a novel mean-payoff progress measure approach that en-
riches such measures with the notion of quasi dominions, originally introduced
by Benerecetti et al. (2016c, 2018b) to efficiently solve parity games with the pri-
ority promotion approach (see also Benerecetti et al. (2016a,b, 2018a)). These
are sets of positions with the property that as long as the opponent chooses
to play to remain in the set, it loses the game for sure, hence its best choice is
always to try to escape. A quasi dominion from where escaping is not possible is
a winning set for the other player. A weaker similar notion has been presented
by Fearnley (2010), however, the sets here called snares do not share all the
required properties to work with the priority promotion technique. Progress
measure approaches, such as the one of Brim et al. (2011), typically focus on
finding the best choices of the opponent and little information is gathered on
the other player. In this sense, they are intrinsically asymmetric. Enriching
the approach with quasi dominions can be viewed as a way to also encode the
best choices of the player, information that can be exploited to speed up con-
vergence significantly. The main difficulty here is that suitable lift operators
in the new setting do not enjoy monotonicity. Such a property makes proving
completeness of classic progress measure approaches almost straightforward, as
monotonic operators do admit a least fixpoint. Instead, the lift operator we pro-
pose is only inflationary (specifically, non-decreasing) and, while still admitting
fixpoints, see Bourbaki (1949); Witt (1950), need not have a least one. Hence,
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providing a complete solution algorithm proves more challenging. The advan-
tages, however, are significant. On the one hand, the new algorithm still enjoys
the same worst-case complexity, with respect to the weights in the game, of
the best known algorithm for the problem proposed by Brim et al. (2011). On
the other hand, we show that there exist families of games on which both the
approach of Brim et al. (2011) and the one proposed in Dorfman et al. (2019)
require a number of operations that can be made arbitrarily larger than the one
required by the new approach. Experimental results also witness the fact that
this phenomenon is by no means isolated, as the new algorithm performs orders
of magnitude better than the algorithm developed by Brim et al. (2011).

2. Preliminaries

A two-player turn-based arena is a tuple A = ⟨Ps⊕,Ps⊟,Mv⟩, with Ps⊕ ∩
Ps⊟ = ∅ and Ps≜Ps⊕ ∪ Ps⊟, such that ⟨Ps,Mv⟩ is a finite directed graph
without sinks (e.g. positions with no outgoing moves). Ps⊕ (resp., Ps⊟) is
the set of positions of player ⊕ (resp., ⊟) and Mv ⊆ Ps × Ps is a left-total
relation describing all possible moves. A path in V ⊆ Ps is a finite or infinite
sequence π ∈ Pth(V) of positions in V compatible with the move relation, i.e.,
(πi, πi+1) ∈ Mv , for all i ∈ [0, |π| − 1). If finite, its last element is denoted with
lst(π). A positional strategy for player α ∈ {⊕,⊟} on V ⊆ Ps is a function
σα ∈ Strα(V) ⊆ (V ∩ Psα)→ Ps, mapping each α-position v in V to a position
σα(v) of the game compatible with the move relation, i.e., (v, σα(v)) ∈ Mv .
With Strα(V) we denote the set of all α-strategies on V, while Strα denotes⋃

V⊆Ps Strα(V). A play in V ⊆ Ps from a position v ∈ V w.r.t. a pair of
strategies (σ⊕, σ⊟) ∈ Str⊕(V) × Str⊟(V), called ((σ⊕, σ⊟), v)-play, is a path
π ∈ Pth(V) such that π0 = v and, for all i ∈ [0, |π| − 1), if πi ∈ Ps⊕ then πi+1 =
σ⊕(πi) else πi+1 = σ⊟(πi). The play function play : (Str⊕(V) × Str⊟(V)) ×
V → Pth(V) returns, for each position v ∈ V and pair of strategies (σ⊕, σ⊟) ∈
Str⊕(V) × Str⊟(V), the maximal ((σ⊕, σ⊟), v)-play play((σ⊕, σ⊟), v). If a pair
of strategies (σ⊕, σ⊟) ∈ Str⊕(V)×Str⊟(V) induces a finite play starting from a
position v ∈ V, then play((σ⊕, σ⊟), v) identifies the maximal prefix of that play
that is contained in V. If such pair induces instead an infinite play, then the
play is included in V where the strategies are always defined. According to the
standard notation, the ≜ symbol means the object we introduce is by definition
equal to something. Given a set A, A is the complement, and a partial map
from A to B is denoted with A⇀B.

A mean-payoff game (MPG for short) is a tuple ⅁ = ⟨A,Wg,wg⟩, where A
is an arena, Wg ⊂ Z is a finite set of integer weights, and wg : Ps → Wg is a
weight function assigning a weight to each position. Ps+ (resp., Ps−) denotes
the set of positive-weight positions (resp., non-positive-weight positions). For
convenience, we shall refer to non-positive weights as negative weights. Notice
that this definition of MPG is equivalent to the classic formulation in which
the weights label the moves, instead. The weight function naturally extends to

paths, by setting wg(π)≜
∑|π|−1

i=0 wg(πi). The goal of player ⊕ (resp., ⊟) is to
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maximise (resp., minimise) v(π)≜ lim infi→∞
1
i ·wg(π≤i), where π≤i is the prefix

up to index i. Given a threshold ν, a set of positions V ⊆ Ps is a ⊕-dominion,
if there exists a ⊕-strategy σ⊕ ∈ Str⊕(V) such that, for all ⊟-strategies σ⊟ ∈
Str⊟(V) and positions v ∈ V, the induced play π = play((σ⊕, σ⊟), v) satisfies
v(π) > ν. Under this interpretation, the pair of winning sets (Wn⊕,Wn⊟),
also called winning regions, forms a ν-mean partition of the positions of the
game. Assuming ν integer, the ν-mean partition problem, in which the goal
of player ⊕ (resp., ⊟) is to induce plays such that v(π) > ν (resp., v(π) ≤ ν),
is equivalent to the 0-mean partition one, as we can subtract ν to the weights
of all the positions. As a consequence, the MPG decision problem can be
equivalently restated as deciding whether player ⊕ (resp., ⊟) has a strategy to
enforce lim infi→∞

1
i · wg(π≤i) > 0 (resp., lim infi→∞

1
i · wg(π≤i) ≤ 0), for all

the resulting plays π.

3. Solving Mean-Payoff Games via Progress Measures

The abstract notion of progress measure, see Klarlund (1991), has been in-
troduced as a way to encode global properties on paths of a graph by means
of simpler local properties of adjacent vertexes. In the context of MPGs, the
graph property of interest, called mean-payoff property, requires that the mean
payoff of every infinite path in the graph be non-positive. More precisely, in
game theoretic terms, a mean-payoff progress measure witnesses the existence
of strategy σ⊟ for player ⊟ such that each path in the graph induced by fix-
ing that strategy on the arena satisfies the desired property. A mean-payoff
progress measure associates with each vertex of the underlying graph a value,
called measure, taken from the set of extended natural numbers N∞ ≜N∪{∞},
endowed with an ordering relation ≤ and an addition operation +, which ex-
tends the standard ordering and addition over the naturals in the usual way.
Measures are associated with positions in the game and the measure of a posi-
tion v can intuitively be interpreted as an estimate of the payoff that player ⊕
can enforce on the plays starting in v. In this sense, they measure “how far” v is
from satisfying the mean-payoff property, with positive (resp. negative) weights
pushing away from (resp., towards) the property and the maximal measure ∞
denoting failure of the property for v. More precisely, the ⊟-strategy induced
by a progress measure ensures that measures do not increase along the paths of
the induced graph. This ensures that every path eventually gets trapped in a
non-positive-weight cycle, witnessing a win for player ⊟.

To obtain a progress measure, one starts from some suitable association of
position of the game with measures. The local information encoded by these
measures is then propagated back along the edges of the underlying graph so
as to associate with each position the information gathered along plays of some
finite length starting from that position. The propagation process is performed
according to the following intuition. The measures of positions adjacent to v (i.e.
successors of v) are propagated back to v only if those measures push v further
away from the property. This propagation is achieved by means of a measure
stretch operation +, which adds, when appropriate, the measure of an adjacent
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position to the weight of a given position. This is established by comparing the
measure of v with those of its adjacent positions, since, for each position v, the
mean-payoff property is defined in terms of the sum of the weights encountered
along the plays from that position. The process ends when no position can
be pushed further away from the property and each position is not dominated
by any, respectively one, of its adjacents, depending on whether that position
belongs to player ⊕ or to player ⊟, respectively. The positions that did not
reach measure ∞ are those from which player ⊟ can win the game and the
set of measures currently associated with such positions forms a mean-payoff
progress measure for the game.

To make the above intuitions precise, we introduce the notion of measure
function, progress measure, and an algorithm for computing progress measures
correctly. It is worth noticing that the progress-measure based approach as
described by Brim et al. (2011), called Small Energy Progress Measure (SEPM
for short) from now on, can be easily recast equivalently in the form below. A
measure function µ : Ps → N∞ maps each position v in the game to a suitable
measure µ(v). The order ≤ of the measures naturally induces a pointwise partial
order ⊑ on the measure functions defined in the usual way, namely, for any two
measure functions µ1 and µ2, we write µ1 ⊑ µ2 if µ1(v) ≤ µ2(v), for all positions
v. The set of measure functions over a measure space, together with the induced
ordering ⊑, forms a measure-function space.

Definition 1 (Measure-Function Space). The measure-function space is the
partial order F ≜ ⟨MF,⊑⟩ whose components are defined as follows:

1. MF≜Ps → N∞ is the set of all functions µ ∈ MF, called measure func-
tions, mapping each position v ∈ Ps to a measure µ(v) ∈ N∞;

2. for all µ1, µ2 ∈ MF, it holds that µ1 ⊑ µ2 if µ1(v) ≤ µ2(v), for all v ∈ Ps.

The ⊕-denotation (resp., ⊟-denotation) of a measure function µ ∈ MF is the set
∥µ∥⊕ ≜µ−1(∞) (resp., ∥µ∥⊟ ≜µ−1(∞)) of all positions having maximal (resp.,
non-maximal) measure associated within µ.

Consider a position v with a edge to an adjacent u which, in turn, has
measure η. A measure update of η w.r.t. v is obtained by the stretch operator
+: N∞ × Ps→ N∞, defined as

η+ v≜max{0, η+wg(v)},

which corresponds to the payoff estimate that the given position will obtain by
choosing to follow the move leading to the position u.

A mean-payoff progress measure is such that the measure associated with
each game position v needs not be increased further in order to beat the actual
payoff of the plays starting from v. In particular, it can be defined by taking
into account the opposite attitude of the two players in the game. While the
player ⊕ tries to push towards higher measures, the player ⊟ will try to keep the
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measures as low as possible. A measure function in which the payoff of each ⊕-
position (resp., ⊟-position) v is not dominated by the payoff of all (resp., some
of) its adjacents augmented with the weight of v itself meets the requirements.

Definition 2 (Progress Measure). A measure function µ ∈ MF is a progress
measure if the following two conditions hold true, for all positions v ∈ Ps:

1. µ(u)+ v ≤ µ(v), for all adjacents u ∈ Mv(v) of v, if v ∈ Ps⊕;

2. µ(u)+ v ≤ µ(v), for some adjacent u ∈ Mv(v) of v, if v ∈ Ps⊟.

The notion can be further restricted to subsets of positions by only consider-
ing the subgame induced by the given subset. The following theorem states the
fundamental property of progress measures, namely, that every position with a
non-maximal measures is won by player ⊟.

Theorem 1 (Progress Measure). ∥µ∥⊟ ⊆Wn⊟, for all progress measures µ.

In order to obtain a progress measure from a given measure function, one
can iteratively adjust the current measure values in such a way to force the
above progress condition among adjacent positions. To this end, we define the
lift operator lift : MF→ MF as follows:

lift(µ)(v)≜

{
max{µ(w)+ v |w ∈ Mv(v)}, if v ∈ Ps⊕;

min{µ(w)+ v |w ∈ Mv(v)}, otherwise.

Note that the lift operator is clearly monotone and, therefore, admits a least fix-
point. A mean-payoff progress measure can be obtained by repeatedly applying
this operator until a fixpoint is reached, starting from the minimal measure func-
tion µ0 ≜{v ∈ Ps 7→ 0} that assigns measure 0 to all the positions in the game.
The following solver operator applied to µ0 computes the desired solution:

sol≜ lfpµ . lift(µ) : MF→ MF.

Observe that the measures generated by the procedure outlined above have a
fairly natural interpretation. Each positive measure, indeed, under-approximates
the weight that player ⊕ can enforce along finite prefixes of the plays from the
corresponding positions. This follows from the fact that, while player ⊕ max-
imises its measures along the outgoing moves, player ⊟ minimises them. In this
sense, each positive measure witnesses the existence of a positively-weighted
finite prefix of a play that player ⊕ can enforce.

Let S≜
∑
{wg(v) ∈ N | v ∈ Ps ∧ wg(v) > 0} be the sum of all the positive

weights in the game. Clearly, the maximal payoff of a simple play (i.e., a play
with no repeated positions) in the underlying graph cannot exceed S. There-
fore, a measure greater than S witnesses the existence of a cycle whose payoff
diverges to infinity and is, thus, won by player ⊕. Hence, any measure strictly
greater than S can be substituted with the value ∞. This observation estab-
lishes the termination of the algorithm and is instrumental to its completeness

7



proof. Indeed, at the fixpoint, the measures actually coincide with the high-
est payoff player ⊕ is able to guarantee. Soundness and completeness of the
above procedure have been established in Brim et al. (2011), where the au-
thors also show that, despite the algorithm requiring O(n · S) = O

(
n2 ·W

)
lift operations in the worst-case, with n the number of positions and W the
maximal positive weight in the game, the overall cost of these lift operations is
O(S ·m · logS) = O(n ·m ·W · log(n ·W )), with m the number of moves and
O(logS) the cost of each arithmetic operation necessary to compute the stretch
of the measures.

4. Solving Mean-Payoff Games via Quasi Dominions

a/k b/−k

c/0 d/1

Figure 1: A simple MPG.

Let us consider the simple example game de-
picted in Figure 1, where the shape of each po-
sition indicates the owner, circles for player ⊕
and square for its opponent ⊟, and, in each la-
bel of the form ℓ/w, the letter w corresponds to
the associated weight, where we assume k > 1.
Starting from the smallest measure function µ0 =
{a, b, c, d 7→ 0}, the first application of the lift op-
erator returns µ1 = {a 7→ k; b, c 7→ 0; d 7→ 1} =

lift(µ0). After that step, the following iterations of the fixpoint alternatively
updates positions c and d, since the other ones already satisfy the progress
condition. Being c ∈ Ps⊟, the lift operator chooses for it the measure com-
puted along the move (c, d), thus obtaining µ2(c) = lift(µ1)(c) = µ1(d) = 1.
Subsequently, d is updated to µ3(d) = lift(µ2)(d) = µ2(c) + 1 = 2. A progress
measure is obtained after exactly 2k+1 iterations, when the measure of c reaches
value k and d value k + 1. Note, however, that the choice of the move (c, d)
is clearly a losing strategy for player ⊟, as remaining in the highlighted region
would make the payoff from position c diverge. Therefore, the only reason-
able choice for player ⊟ is to exit from that region by taking the move leading
to position a. An operator able to diagnose this phenomenon early on could
immediately discard the move (c, d) and jump directly to the correct payoff
obtained by choosing the move to position a. As we shall see, such an operator
might lose the monotonicity property and recovering the completeness of the
resulting approach will prove more involved. In the rest of this article we devise
a progress operator that does precisely that. We start by providing a notion
of quasi dominion, originally introduced for parity games by Benerecetti et al.
(2016c, 2018b), which can be exploited in the context of MPGs.

Definition 3 (Quasi Dominion). A set of positions Q ⊆ Ps is a quasi ⊕-
dominion if there exists a ⊕-strategy σ⊕ ∈ Str⊕(Q), called ⊕-witness for Q,
such that, for all ⊟-strategies σ⊟ ∈ Str⊟(Q) and positions v ∈ Q, the play
π = play((σ⊕, σ⊟), v), called (σ⊕, v)-play in Q, satisfies wg(π) > 0. If the
condition wg(π) > 0 holds only for infinite plays π, then Q is called weak quasi
⊕-dominion.
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Essentially, a quasi ⊕-dominion consists in a set Q of positions starting from
which player ⊕ can force plays in Q of positive weight. Analogously, any infinite
play that player ⊕ can force to remain in a weak quasi ⊕-dominion forever has
positive weight. Clearly, any quasi ⊕-dominion is also a weak quasi ⊕-dominion.
Moreover, the latter are closed under subsets, while the former are not. It is an
immediate consequence of the definition above that all infinite plays induced by
the ⊕-witness, if any, necessarily have infinite weight and, thus, are winning for
player ⊕. Indeed, every such play π is regular, i.e. it can be decomposed into
a prefix π′ and a simple cycle (π′′)ω, i.e. π = π′(π′′)ω, since the strategies we
are considering are memoryless. Now, wg((π′′)ω) > 0, so, wg(π′′) > 0, which
implies wg((π′′)ω) =∞. Hence, wg(π) =∞.

Proposition 1. Let Q be a weak quasi ⊕-dominion with σ⊕ ∈ Str⊕(Q) one of its
⊕-witnesses and Q⋆⊆ Q. Then, for all ⊟-strategies σ⊟ ∈ Str⊟(Q

⋆) and positions
v ∈ Q⋆ the following holds: if the (σ⊕↾Q⋆, v)-play π = play((σ⊕↾Q⋆, σ⊟), v) is

infinite, then wg(π) =∞.

From Proposition 1, it follows that, if a weak quasi ⊕-dominion Q is closed
w.r.t. its ⊕-witness, that is all the induced plays that follow the ⊕-witness
strategy are infinite, then it is a ⊕-dominion, hence is contained in Wn⊕.

Example 1. Consider again the example of Figure 1. The set of position
Q≜{a, c, d} forms a quasi ⊕-dominion whose ⊕-witness is the only possible
⊕-strategy mapping position d to c. Indeed, any infinite play remaining in Q
forever and compatible with that strategy (e.g., the play from position c when
player ⊟ chooses the move from c leading to d or the one from a to itself or the
one from a to d) grants an infinite payoff. Any finite compatible play, instead,
ends in position a (e.g., the play from c when player ⊟ chooses the move from
c to a and then the one from a to b) giving a payoff of at least k > 0. On the
other hand, Q⋆≜{c, d} is only a weak quasi ⊕-dominion, as player ⊟ can force
a play of weight 0 from position c, by choosing the exiting move (c, a). However,
the internal move (c, d) would lead to an infinite play in Q⋆ of infinite weight.

The crucial observation made in Example 1 is that the best choice for player
⊟ in any position of a (weak) quasi ⊕-dominion is to exit from it as soon as it
can, while the best choice for player ⊕ is to remain inside it as long as possible.
The idea of the algorithm we propose in this section is to precisely exploit the
information provided by the quasi dominions in the following way.

Example 2. Consider the example above. In position a player ⊟ must choose to
exit from Q = {a, c, d}, by taking the move (a, b), without changing its measure,
which would correspond to its weight k. On the other hand, the best choice for
player ⊟ in position c is to exit from the weak quasi-dominion Q⋆= {c, d}, by
choosing the move (c, a) and lifting its measure from 0 to k. Note that this con-
trasts with the minimal measure-increase policy for player ⊟ employed by Brim
et al. (2011), which would keep choosing to leave c in the quasi-dominion by fol-
lowing the move to d, which gives the minimal increase in measure of value 1.
Once c is out of the quasi-dominion, though, the only possible move for player ⊕
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in position d is to exit towards c, which will give d measure k+1. The resulting
measure function is the desired progress measure.

In order to make the intuitive idea of Example 2 precise, we need to be able
to identify quasi dominions first. Interestingly enough, the measure functions
µ defined in the previous section do allow to identify a quasi dominion, namely
the set of positions µ−1(0) having positive measure. Indeed, as observed at the
end of that section, a positive measure witnesses the existence of a positively-
weighted finite play that player ⊕ can enforce from that position onward, which
is precisely the requirement of Definition 3.

Example 3. In the example of Figure 1, µ−1
0 (0) = ∅ and µ−1

1 (0) = {a, c, d} are
both quasi dominions, the first one w.r.t. the empty ⊕-witness and the second
one w.r.t. the ⊕-witness σ⊕(d) = c.

We shall keep the quasi-dominion information in pairs (µ, σ), called quasi-
dominion representations (qdr, for short), composed of a measure function µ
and a ⊕-strategy σ, which corresponds to one of the ⊕-witnesses of the set
of positions with positive measure in µ. The connection between these two
components is formalised in the definition below that also provides the partial
order over which the new algorithm operates.

Definition 4 (QDR Space). The quasi-dominion-representation space is the
partial orderM≜ ⟨R , ⊑⟩, whose components are defined as follows:

1. R ⊆ MF × Str⊕ is the set of all pairs ϱ≜(µϱ, σϱ) ∈ R, called quasi-
dominion-representations, composed of a measure function µϱ ∈ MF and

a ⊕-strategy σϱ ∈ Str⊕(qsi(ϱ)), where qsi(ϱ)≜µ−1
ϱ (0), for which:

(a) qsi(ϱ) is a quasi ⊕-dominion having σϱ as a ⊕-witness;
(b) ∥µϱ∥⊕ is a ⊕-dominion;

(c) µϱ(v) ≤ µϱ(σϱ(v)) + v, for all ⊕-positions v ∈ qsi(ϱ) ∩ Ps⊕;

(d) µϱ(v) ≤ µϱ(u)+v, for all ⊟-positions v ∈ qsi(ϱ)∩Ps⊟ and u ∈ Mv(v);

2. for all ϱ1, ϱ2 ∈ R, it holds that ϱ1 ⊑ ϱ2 if µϱ1
⊑ µϱ2

and σϱ1
(v) = σϱ2

(v),
for all ⊕-positions v ∈ qsi(ϱ1) ∩ Ps⊕ with µϱ1

(v) = µϱ2
(v).

The α-denotation ∥ϱ∥α of a qdr ϱ, with α ∈ {⊕,⊟}, is the α-denotation ∥µϱ∥α
of its measure function.

Condition 1a is obvious, while Condition 1b, instead, requires every position
with infinite measure to be won by player ⊕ and is crucial to guarantee the
completeness of the algorithm. Finally, Conditions 1c and 1d ensure that ev-
ery positive measure under approximates the actual weight of some finite play
within the induced quasi dominion. This is formally captured by the following
proposition, which can be easily proved by induction on the length of the play.
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Proposition 2. Let ϱ be a qdr and vπu a finite path starting at position v ∈ Ps
and terminating in position u ∈ Ps compatible with the ⊕-strategy σϱ. Then,
µϱ(v) ≤ wg(vπ) + µϱ(u).

It is easy to see that every MPG admits a non-trivial QDR space, since the
pair (µ0, σ0), with µ0 the smallest measure function and σ0 the empty strategy,
clearly satisfies all the required conditions.

Proposition 3. Every MPG has a non-empty QDR space associated with it.

The solution procedure we propose, called QDPM from now on, can intu-
itively be broken down as an alternation of two phases. The first one tries to lift
the measures of positions outside the quasi dominion qsi(ϱ) in order to extend
it, while the second one lifts the positions inside qsi(ϱ) that can be forced to
exit from it by player ⊟. The algorithm terminates when no new position can
be absorbed in the quasi dominion and no measure needs to be lifted to allow
the ⊟-winning positions to exit from it, when possible. To this end, we define
a controlled lift operator lift : R× 2Ps × 2Ps ⇀R that works on qdrs and takes
two additional parameters, a source and a target set of positions. The intended
meaning is that we want to restrict the application of the lift operation to the
positions in the source set S, while using only the moves leading to the target set
T. The different nature of the two types of lifting operations applied in the two
phases is reflected in the actual values of their source and target parameters.

lift(ϱ, S,T)≜ ϱ⋆, where

µϱ⋆(v)≜


max{µϱ(u) + v |u ∈ Mv(v) ∩ T}, if v ∈ S ∩ Ps⊕;

min{µϱ(u) + v |u ∈ Mv(v) ∩ T}, if v ∈ S ∩ Ps⊟;

µϱ(v), otherwise;

and, for all ⊕-positions v ∈ qsi(ϱ⋆) ∩ Ps⊕,

σϱ⋆(v) ∈ argmaxu∈Mv(v)∩T µϱ(u) + v, if µϱ⋆(v) ̸= µϱ(v), and

σϱ⋆(v) = σϱ(v), otherwise.

Except for the restriction on the outgoing moves considered, which are those
leading to the targets in T, the lift operator acts on the measure component of
a qdr very much like the original lift operator does. In order to ensure that the
result is still a qdr, however, the lift operator must also update the ⊕-witness
of the quasi dominion. This is required to guarantee that Conditions 1a and 1c
of Definition 4 are preserved. If the measure of a ⊕-position v is not affected
by the lift, the ⊕-witness must not change for that position. However, if the
application of the lift operation increases the measure, then the ⊕-witness on
v needs to be updated to any move (v, u) that grants measure µϱ⋆(v) to v. In
principle, more than one such move may exist and any one of them can serve as
witness.

11



The solution of a game corresponds now to the inflationary fixpoint, see Bour-
baki (1949); Witt (1950), of the two phases mentioned above, which are realised
by the progress operators prg0 and prg+.

sol≜ ifp ϱ . prg+(prg0(ϱ)) : R⇀R.

The first phase is computed by the operator prg0 : R⇀R:

prg0(ϱ)≜ sup{ϱ, lift(ϱ, qsi(ϱ),Ps)}.

This operator is responsible for enforcing the progress condition on the positions
outside the quasi dominion qsi(ϱ) that do not satisfy the inequalities between
the measures obtained by following the moves leading to qsi(ϱ). It does that
by applying the lift operator with qsi(ϱ) as source and no restrictions on the
moves. Those positions that acquire a positive measure in this phase contribute
to enlarging the current quasi dominion. Observe that the strategy component
of the qdr is updated so that it is a ⊕-witness of the new quasi dominion. To
guarantee that measures never decrease, the supremum w.r.t. the QDR-space
ordering is taken as the result.

Lemma 1. µϱ is a progress measure over qsi(ϱ), for all fixpoints ϱ of prg0.

The second phase, instead, implements the mechanism intuitively described
above when analysing the simple example of Figure 1. This is achieved by the
operator prg+ reported in Algorithm 1. The procedure iteratively examines the
current quasi dominion and lifts the measures of the positions that must exit
from it. Specifically, it processes qsi(ϱ) layer by layer, starting from the outer
layer of positions (the ones who have adjacents out of the set) that must es-
cape. The process ends when a, possibly empty, closed weak quasi dominion is
obtained. Recall that all the positions in a closed weak quasi dominion are nec-
essarily winning for player ⊕, due to Proposition 1. We distinguish two sets of
positions in qsi(ϱ). Those that already satisfy the progress condition and those
that do not. The measures of the first ones already witness an escape route from
qsi(ϱ). The other ones, instead, are those whose current choice is to remain inside
it.

Algorithm 1: Progress
Operator

signature prg+ : R⇀R
function prg+(ϱ)

1 Q← ∆(ϱ)
2 while esc(ϱ,Q) ̸= ∅ do
3 E← bep(ϱ,Q)

4 ϱ← lift(ϱ,E,Q)
5 Q← Q \ E
6 ϱ← win(ϱ,Q)
7 return ϱ

For instance, when considering the measure
function µ2 in the example of Figure 1, po-
sition a belongs to the first set, while po-
sitions c and d to the second one, since
the choice of c is to follow the internal
move (c, d). Since the only positions that
change measure are those in the second set,
only such positions need to be examined.
Observe that those positions form a weak
quasi dominion ∆(ϱ) strictly contained in
qsi(ϱ). To identify them we proceed as fol-
lows. First, we collect the set npp(ϱ) of posi-
tions in qsi(ϱ) that do not satisfy the progress condition, called the non-progress
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positions. Then, we compute the set of positions that will have no choice other
than reaching npp(ϱ).

npp(ϱ)≜ {v ∈ qsi(ϱ) ∩ Ps⊕ | ∃u ∈ Mv(v) . µϱ(v) < µϱ(u) + v}
∪ {v ∈ qsi(ϱ) ∩ Ps⊟ | ∀u ∈ Mv(v) . µϱ(v) < µϱ(u) + v}.

The remaining positions in ∆(ϱ) are collected as the inflationary fixpoint of the
following operator.

pre(ϱ,Q)≜ Q ∪ {v ∈ qsi(ϱ) ∩ Ps⊕ |σϱ(v) ∈ Q}
∪ {v ∈ qsi(ϱ) ∩ Ps⊟ | ∀u ∈ Mv(v) \Q . µϱ(v) < µϱ(u) + v}.

The final result is
∆(ϱ)≜(ifpQ . pre(ϱ,Q))(npp(ϱ)).

Intuitively, ∆(ϱ) contains all the ⊕-positions that are forced to reach npp(ϱ)
via the quasi-dominion ⊕-witness and all the ⊟-positions that can only avoid
reaching npp(ϱ) by strictly increasing their measure, which is something that
player ⊟ obviously wants to prevent.

It is important to observe that, from a functional view-point, the progress
operator prg+ would work just as well if applied to the entire quasi dominion
qsi(ϱ), since it would simply leave unchanged the measure of those positions
that already satisfy the progress condition. However, it is crucial that only
the positions in ∆(ϱ) are processed in order to achieve the best asymptotic
complexity bound known to date. We shall reiterate on this point later on. At
each iteration of the while-loop of Algorithm 1, let Q denote the current (weak)
quasi dominion, initially set to ∆(ϱ) (Line 1). It first identifies the positions
in Q that can immediately escape from it (Line 2). Those are (i) all the ⊟-
position with a move leading outside of Q and (ii) the ⊕-positions v whose ⊕-
witness σϱ forces v to exit from Q, namely σϱ(v) ̸∈ Q, and that cannot strictly
increase their measure by choosing to remain in Q. While the condition for
⊟-position is obvious, the one for ⊕-positions requires some explanation. The
crucial observation here is that, while player ⊕ does indeed prefer to remain in
the quasi dominion, it can only do so while ensuring that by changing strategy
it does not enable infinite plays within Q that are winning for the adversary. In
other words, the new ⊕-strategy must still be a ⊕-witness for Q and this can
only be ensured if the new choice strictly increases its measure. The operator
esc : R× 2Ps → 2Ps formalises the idea:

esc(ϱ,Q)≜ {v ∈ Q ∩ Ps⊟ |Mv(v) \Q ̸= ∅}
∪ {v ∈ Q ∩ Ps⊕ |σϱ(v) ̸∈ Q ∧ ∀u ∈ Mv(v) ∩Q . µϱ(u) + v ≤ µϱ(v))}.

Example 4. Consider, for instance, the example in Figure 2 and a qdr ϱ such
that µϱ = {a 7→ 3; b 7→ 2; c, d, f 7→ 1; e 7→ 0} and σϱ = {b 7→ a; f 7→ d}.
In this case, we have Q = {a, b, c, d, f} and ∆(ϱ) = {c, d, f}, since c is the
only non-progress position, d is forced to follow c in order to avoid the measure
increase required to reach b, and f is forced by the ⊕-witness to reach d. Now,
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consider the situation where the current weak quasi dominion is Q = {c, f}, i.e.
after d has escaped from ∆(ϱ). The escape set of Q is {c, f}. To see why the
⊕-position f is escaping, observe that µϱ(f) + f = 1 = µϱ(f) and that, indeed,
should player ⊕ choose to change its strategy and take the move (f, f) to remain
in Q, it would obtain an infinite play with payoff 0, thus violating the definition
of weak quasi dominion.

a/3 b/−1

c/1 d/0

e/−3 f/0

Figure 2: Another
MPG.

Before proceeding, we want to emphasise an easy con-
sequence of the definition of the notion of escape set and
Conditions 1c and 1d of Definition 4, i.e., that every es-
cape position of the quasi dominion qsi(ϱ) can only assume
its weight as possible measure inside a qdr ϱ, as reported
is the following proposition. This observation, together
with Proposition 2, ensures that the measure of a posi-
tion v ∈ qsi(ϱ) is an under approximation of the weight
of all finite plays leaving qsi(ϱ).

Proposition 4. Let ϱ be a qdr. Then, µϱ(v) = wg(v) >
0, for all v ∈ esc(ϱ, qsi(ϱ)).

Now, going back to the analysis of the algorithm, if the escape set is non-
empty, we select the escape positions that need to be lifted in order to satisfy
the progress condition. The main difficulty is to do so in such a way that the
resulting measure function still satisfies Condition 1d of Definition 4, for all the
⊟-positions with positive measure. The problem occurs when a ⊟-position can
exit either immediately or by following a path leading to another position in the
escape set.

Example 5. Consider again the example above, where Q = ∆(ϱ) = {c, d, f}. If
position d immediately escapes from Q using the move (d, b), it would change its
measure to µ′(d) = µ(b) + d = 2 > µ(d) = 1. Now, position c has two ways to
escape, either directly with move (c, a) or by reaching the other escape position
d passing through f. The first choice would set its measure to µ(a) + c = 4.
The resulting measure function, however, would not satisfy Condition 1d of
Definition 4, as the new measure of c would be greater than µ′(d) + c = 2,
preventing us to obtain a qdr. Similarly, if position d escapes from Q passing
through c via the move (c, a), we would have µ′′(d) = µ′′(c)+d = (µ(a)+c)+d =
4 > 2 = µ(b) + d, still violating Condition 1d. Therefore, in this specific case,
the only possible way to escape is to reach b. The solution to this problem is
simply to lift, in the current iteration, only those positions that obtain the lowest
possible measure increase, hence position d in the example, leaving the lift of c to
some subsequent iteration of the algorithm that would choose the correct escape
route via d.

In order to generalize the solution idea given in the example above, we
proceed as follows. We start by computing the minimal measure increase, called
the best-escape forfeit, that each position in the escape set would obtain by
exiting the quasi dominion immediately. At this point, the positions with the
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lowest possible forfeit, called best-escape positions, can all be lifted at the same
time. The intuition is that the measure of all the positions that escape from
a (weak) quasi dominion will necessarily be increased of at least the minimal
best-escape forfeit. This observation is at the core of the proof of Theorem 2
(see the appendix) ensuring that the desired properties of qdrs are preserved by
the operator prg+. The set of best-escape positions is computed by the operator
bep : R× 2Ps → 2Ps as follows:

bep(ϱ,Q)≜ argminv∈esc(ϱ,Q)bef(µϱ,Q, v),

where the operator bef : MF× 2Ps ×Ps→ N∞ computes, for each position v in
a quasi dominion Q, its best-escape forfeit as follows:

bef(µ,Q, v)≜

{
max{µ(u) + v − µ(v) |u ∈ Mv(v) \Q}, if v ∈ Ps⊕;

min{µ(u) + v − µ(v) |u ∈ Mv(v) \Q}, otherwise.

In Example 5, bef(µ,Q, c) = µ(a) + c− µ(c) = 4− 1 = 3, while bef(µ,Q, d) =
µ(b) + d− µ(d) = 2− 1 = 1. Therefore, bep(ϱ,Q) = {d}.

Once the set E of best-escape positions is identified (Line 3), the proce-
dure lifts them restricting the possible moves to those leading outside the cur-
rent quasi dominion (Line 4). Those positions are, then, removed from the
set (Line 5), thus obtaining a smaller weak quasi dominion ready for the next
iteration.

The algorithm terminates when the (possibly empty) current quasi dominion
Q is closed. By virtue of Proposition 1, all those positions belong to Wn⊕ and
their measure is set to∞ by means of the operator w : R×2Ps ⇀QDR (Line 6),
which also computes the winning ⊕-strategy on those positions.

win(ϱ,Q)≜ ϱ⋆, where µϱ⋆≜µϱ[Q 7→ ∞]

and, for all ⊕-positions v ∈ qsi(ϱ⋆) ∩ Ps⊕,

σϱ⋆(v) ∈ argmaxu∈Mv(v)∩Qµϱ(u)+v, if σϱ(v) ̸∈ Q and σϱ⋆(v) = σϱ(v), otherwise.

Observe that, since we know that every ⊕-position v ∈ Q ∩Ps⊕, whose current
⊕-witness leads outside Q, is not an escape position, any move (v, u) remaining
inside Q that grants the maximal stretch µϱ(u)+v strictly increases its measure
and, therefore, is a possible choice for a ⊕-witness of the ⊕-dominion Q.

At this point, it should be quite evident that the progress operator prg+ is
responsible for enforcing the progress condition on the positions inside the quasi
dominion qsi(ϱ), thus, the following necessarily holds.

Lemma 2. µϱ is a progress measure over qsi(ϱ), for all fixpoints ϱ of prg+.

Example 6. The lack of monotonicity of the progress operator prg+ is illus-
trated by the following example. Consider the game of Figure 3 and the two
qdrs ϱ1 = (µϱ1

, σϱ1
) and ϱ2 = (µϱ2

, σϱ2
), whose components are: µϱ1

=
{a 7→ 3; b 7→ 0; c 7→ 2; d, e 7→ 1} and σϱ1

= {e 7→ d}; µϱ2
= {a 7→ 3; b 7→
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0; c, e 7→ 2; d 7→ 1} and σϱ2 = {e 7→ c}. Obviously, ϱ1 ⊏ ϱ2. However,

ϱ⋆1≜ prg+(ϱ1) ̸⊑ ϱ⋆2≜ prg+(ϱ2). Indeed, µϱ⋆
1
= {a 7→ 3; b 7→ 0; c 7→ 2; d, e 7→ 4},

while µϱ⋆
2
= {a 7→ 3; b 7→ 0; c, e 7→ 2; d, 7→ 3}, which implies that ϱ⋆2⊏ ϱ⋆1. More-

over, ϱ⋆1 is already a progress measure, while ϱ⋆2 requires another application of
prg+ in order to solve the game, since ϱ⋆1= prg+(ϱ

⋆
2).

a/3 b/−3 c/2

d/1 e/0

Figure 3: Yet another MPG.

In order to prove the correctness of the proposed
algorithm, we first need to ensure that any quasi-
dominion space M is indeed closed under the oper-
ators prg0 and prg+. This is established by the fol-
lowing theorem, which states that the operators are
total functions on that space.

Theorem 2. The operators prg0 and prg+ are total inflationary functions.

Since both operators are inflationary, so is their composition, which ad-
mits a fixpoint. Therefore, the operator sol is well defined. In particular, fol-
lowing the same considerations discussed at the end of Section 3, it can be
proved that the fixpoint is obtained after at most n · (S + 1) iterations, where
S≜

∑
{wg(v) ∈ N | v ∈ Ps ∧ wg(v) > 0}.

Such a bound can actually be improved by noticing that the measure as-
sociated with a position at each iteration is always obtained by summing up
the weights along some simple path in the quasi dominion leading to an escape
position. Let SPth(V) ⊆ Pth(V) be the set of all simple paths over the set of
positions V ⊆ Ps. We say that a qdr ϱ ∈ R is simple if, for every position
v ∈ qsi(ϱ) with µϱ(v) ̸= ∞, it holds true that µϱ(v) = wg(π), for some simple
path π ∈ SPth(qsi(ϱ)) ending in an escape position, i.e., lst(π) ∈ esc(ϱ, qsi(ϱ)).
For a simple qdr ϱ, we say that µϱ(v) is a simple measure. Both operators
applied to a simple qdr ϱ return a simple qdr as well. Indeed, prg0 adds po-
sitions outside qsi(ϱ) to the quasi dominion. Therefore, the measure obtained
by each such position v is obtained by adding its weight wg(v) to the measure
of an adjacent position w ∈ qsi(ϱ). Hence, since µϱ(w) is a simple measure by
assumption and v ̸∈ qsi(ϱ), we have that prg0(ϱ)(v) is indeed a simple measure.
As to prg+, observe that all positions v ∈ qsi(ϱ) outside ∆(ϱ) have a measure of
a simple path leading to esc(ϱ, qsi(ϱ)) that does not pass through ∆(ϱ), since,
otherwise, v would belong to ∆(ϱ) by definition. This property is preserved
on qsi(ϱ) \Q by each iteration of the while-loop (Lines 2-5), since any position
v lifted at Line 4 takes a measure obtained by adding its weight wg(v) to the
measure of an adjacent position w ∈ qsi(ϱ) \Q, which, by inductive hypothesis,
has a simple measure. These observations lead to the following proposition.

Proposition 5. The operators prg0 and prg+ map simple qdrs in simple qdrs.

Thanks to this result, the number of iteration required by sol is bounded
by n · (Z + 1), where Z ≜ |{wg(π) ∈ N |π ∈ SPth(Ps)}| ≤ S is the number of
possible positive weights associated with a simple paths in the game. The value
Z, in turn, is O(n ·min{W, (n− 1)!}), as there are at most n! simple paths, each
one having weight at most equal to S = O(n ·W ).
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Let ifpk X .F(X) denote the k-th iteration of an inflationary operator F.
Then, we have the following theorem.

Theorem 3 (Termination). The solver operator sol≜ ifp ϱ . prg+(prg0(ϱ)) is a
well-defined total function. Moreover, for every simple qdr ϱ ∈ R it holds that
sol(ϱ) = (ifpk ϱ

⋆. prg+(prg0(ϱ
⋆)))(ϱ), for some index k ≤ n · (Z + 1), where n is

the number of positions in the MPG and Z is the number of positive weights of
all its simple paths, i.e., Z ≜ |{wg(π) ∈ N |π ∈ SPth(Ps)}|.

As already observed before, Figure 1 exemplifies an infinite family of games
with a fixed number of positions and increasing maximal weight k over which
the SEPM algorithm requires 2k + 1 iterations of the lift operator. On the
contrary, QDPM needs exactly two iterations of the solver operator sol to find
the progress measure, starting from the smallest measure function µ0. Indeed,
the first iteration returns a measure function µ1 = sol(µ0), with µ1(a) = k,
µ1(b) = µ1(c) = 0, and µ1(d) = 1, while the second one µ2 = sol(µ1) identifies
the smallest progress measure, with µ1(a) = µ1(c) = k, µ1(b) = 0, and µ1(d) =
k + 1. A more detailed analysis of another family of games exhibiting a similar
behaviour is provided at the end of this section. From these observations, the
next result immediately follows.

Theorem 4. An infinite family of MPGs {⅁k}k exists on which QDPM re-
quires a constant number of measure updates, while SEPM requires O(k) such
updates.

From Theorem 1 and Lemmas 1 and 2 it follows that the solution provided
by the algorithm is indeed a progress measure, hence establishing soundness.

Theorem 5 (Soundness). ∥sol(ϱ)∥⊟ ⊆Wn⊟, for every ϱ ∈ R.

Completeness follows from Theorem 3 and from Condition 1b of Definition 4
that ensures that all the positions with infinite measure are winning for player
⊕.

Theorem 6 (Completeness). ∥sol(ϱ)∥⊕ ⊆Wn⊕, for every ϱ ∈ R.

The following lemma ensures that each execution of the operator prg+ strictly
increases the measure of all the positions in ∆(ϱ).

Lemma 3. Let ϱ⋆≜ prg+(ϱ). Then, µϱ⋆(v) > µϱ(v), for all positions v ∈ ∆(ϱ).

Recall that each position can be lifted at most Z+1 = O(n ·min{W, (n− 1)!})
times and, by the previous lemma, the complexity of sol only depends on the cu-
mulative cost of such lift operations. We can express, then, the total cost as the
sum, over the set of positions in the game, of the cost of all the lift operations
performed on those positions. Each such operation can be computed in time
linear in the number of the incoming and outgoing moves of the correspond-
ing lifted position v, namely O

(
(|Mv(v)|+ |Mv−1(v)|) · logS

)
, with O(logS)

the cost of each arithmetic operation involved. Summing everything up, the
actual asymptotic complexity of the procedure can, therefore, be expressed as
O(n ·m ·min{W, (n− 1)!} · log(n ·W )).
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Example 7. The following example shows an execution of the algorithm on
the game depicted in Figure 4, where k > 2. The numbers in the labels of the
positions in the first picture labelled (0) denote the weights. In the remaining
pictures, instead, they denote the measures assigned in the remaining iterations
of the procedure. Each picture also features both the ⊕-witness strategy in dashed
blue and the best counter ⊟-strategy in dashed red for the current quasi domin-
ion. Moreover, moves along which the measure strictly increases are depicted
as solid coloured arrows. Below each picture, we also indicate the phase, prg0
or prg+, that produces the displayed result.

a/k b/−1 c/0 d/−1

e/−k f/2 g/2

(0) : The MPG

a/k b/0 c/0 d/0

e/0 f/2 g/2

(1) :ϱ1=prg0(ϱ0)=prg+(prg0(ϱ0))

a/k b/0 c/2 d/1

e/0 f/2 g/2

(2) : ϱ2 = prg0(ϱ1)

a/k b/0 c/2 d/3

e/0 f/2 g/4

(3) : ϱ3 = prg+(ϱ2)

a/k b/1 c/2 d/3

e/0 f/2 g/4

(4) : ϱ4 = prg0(ϱ3)

a/k b/k−1 c/∞ d/∞

e/0 f/k+1 g/∞

(5) : ϱ5 = prg+(ϱ4)

Figure 4: A simulation of a simple MPG.

The computation starts from the initial qdr ϱ0 = (µ0, σ0), assigning measure
0 to all the positions of the game with the associated empty strategy. The first
iteration applies prg0 to ϱ0, which lifts positions a, f, and g to their respective
weights, leading to ϱ1 as shown in Picture (1). At this point, qsi(ϱ1) = {a, f, g},
but ∆(ϱ1) is empty, since all the positions in qsi(ϱ1) already satisfy the progress
condition, thus, prg+ leaves the measures unchanged. In the next iteration, prg0
applied to ϱ1 results in the lifting of positions c and d, as reported in Picture (2).
Position c is a ⊕-position and the lift operator chooses (c, f) as its strategy. The
resulting quasi-dominion is qsi(ϱ2) = {a, c, d, f, g} and ∆(ϱ2) = {d, g}, with g

the only escape position that is also non-progress. The measure of g is lifted to
µ2(c) + g = 4. Finally, it is the turn of position d to be lifted to µ2(g) + d = 3.
Picture (3) shows the resulting qdr ϱ3. The final iteration first applies prg0
to ϱ3 (Picture (4)), lifting position b to measure 1 via the move (b, c). This
change of measure triggers another application of prg+, as position f is now
non-progress. The resulting qdr ϱ4 is such that qsi(ϱ4) = {a, b, c, d, f, g} and
∆(ϱ4) = {b, c, d, f, g}. The only escape position is b, which is lifted directly to
measure k − 1. In the remaining set {c, d, f, g}, the only escape position is f,
which is lifted to measure k + 1. The resulting weak quasi dominion {c, d, g},
however, is closed, since µϱ4

(c) = 2 < µϱ4
(d) + c = 3. Therefore, player ⊕

changes strategy and chooses the move (c, d). Since no escape positions remain,
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the set {c, d, g} is winning for player ⊕ and the win operator lifts all their
measures to ∞, leading to ϱ5 in Picture (5). The measure function µ5 is now
a progress measure and the algorithm terminates. The total number of single
measure updates for QDPM to reach the fixpoint is 13, regardless of the value
of the maximal weight k in the game assigned to position a.

The example above, similarly to the one in Figure 1, shows a family of
MPGs indexed by the parameter k, corresponding to the absolute value of
the weights of positions a and e, on which the proposed algorithm requires
a constant number of arithmetic operations, regardless of the weights in the
game. This contrasts with what happens with both the algorithms of Brim
et al. (2011) and Dorfman et al. (2019), which require a number of opera-
tions that is linear, resp. logarithmic, on k. To see this, we consider the
algorithm SEPM Brim et al. (2011) first and show that it requires 3k + 8
applications of its lift operator to compute a progress measure, for a total
of 5k + 9 measure updates. Indeed, the first two evaluations of lift, start-
ing from µ0, lead to µ2 = {a 7→ k; b, e 7→ 0; c, f, g 7→ 2; d 7→ 1}, as in Pic-
ture (2), and require 5 measure lifts. Then, the algorithm iteratively increases
the measures of b, g, d, f, and c by applying 3(k − 1) times the lift oper-
ator, for a total of 5(k − 1) measure lifts: µ3i = µ3i−1[b 7→ i; g 7→ i + 3],
µ3i+1 = µ3i[d, f 7→ i + 2], and µ3i+2 = µ3i+1[c 7→ i + 2], for all i ∈ [1, k − 1].
At this point, b and f have obtained measures k − 1 and k + 1, respectively,
which suffice to satisfy the progress relation along the moves (f, b) and (b, a).
However, the ⊟-position g does not satisfy such a relation along its unique move
(g, c), since µ3k−1(g) = k + 2 < µ3k−1(c) + g = (k + 1) + 2 = k + 3. There-
fore, other six applications of lift are needed before g can exceed the bound
S = wg(a) + wg(f) + wg(g) = k + 4. Each such lift modifies the measure of
one position only, for a total of 6 lifts: µ3(k+i) = µ3(k+i)−1[g 7→ k + 3 + i],
µ3(k+i)+1 = µ3(k+i)[d 7→ k+2+ i], and µ3(k+i)+2 = µ3(k+i)+1[c 7→ k+2+ i], for
i ∈ {0, 1}. We have then µ3k+6 = µ3k+5[g 7→ ∞], µ3k+7 = µ3k+6[d 7→ ∞], and,
finally, µ3k+8 = µ3k+7[c 7→ ∞], which contribute with the remaining 3 lifts.

As to the algorithm of Dorfman et al. (2019), the logarithmic dependence on
k is a direct consequence of the employed scaling technique. As mentioned in
the introduction, at each recursive call the algorithm halves the weights of the
game, taking the floor when the result is not integral, until no strictly negative
weights remain in the game. This process alone requires a number of nested
calls which is bounded from below by the logarithm of the maximal negative
value among the weights, in the worst case. Hence, on both the families of
Figures 1 and 4 it requires Ω(log(k)) arithmetic operations.

5. An Efficient Solution Algorithm

To compute sol efficiently, we provide here an imperative reformulation of the
functional fixpoint algorithm sol≜ ifp ϱ . prg+(prg0(ϱ)) that improves on the com-
plexity O(n ·m ·W · log(n·W )) of the SEPM algorithm of Brim et al. (2011).
Recall that, by Lemma 3, each position can only be lifted at most Z + 1 =
O(n ·min{W, (n− 1)!}) times, where Z = {wg(π) ∈ N |π ∈ SPth(Ps)} ≤ S and
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S = O(n ·W ). Therefore, to obtain the desired complexity, we have to guaran-
tee that the cost of all the computational steps be at most quasi-linear in the
number of measure increases. To do so, it suffices to ensure that the algorithm
explores the incoming and outgoing moves only of those positions whose mea-
sures are actually lifted. This is clearly the case for the lift operator itself, since
it only explores the outgoing moves of each position in its source set. The only
remaining problem is to be able to identify the positions that need to be lifted
in the next iteration, by exploring only the incoming moves of the positions just
lifted. Solving this problem requires some technical elementary tricks.

Algorithm 2: MPG Solver

signature sol : MPG→ R
procedure sol(⅁)

1 ϱ← ({v ∈ Ps 7→ 0},∅)
2 c← {v ∈ Ps⊟ 7→

|{u ∈ Mv(v) |µϱ(v) ≥ µϱ(u) + v}|}
3 (N0,N+)← ({v ∈ Ps |wg(v) > 0} , ∅)
4 while N0 ̸= ∅ ∨N+ ̸= ∅ do
5 (N0,A)← prg0(N0)
6 N+ ← N+ ∪A
7 (A,N+)← prg+(N+)
8 N0 ← N0 ∪A

9 return ϱ

Specifically, inspired by Brim
et al. (2011), which in turn
generalises the standard ap-
proach to obtain the optimal
O(m) complexity for reacha-
bility, we employ three vec-
tors of counters: c, d and
g 1. These vectors assign
to the ⊕-positions the num-
ber of moves violating the
progress condition, and to
the ⊟-positions the number
of moves that satisfy it. The
idea is that vectors c, d and g
can be used to check in con-
stant time whether a position needs to be lifted in the next iteration. In addition,
we will also use a binary trie (a.k.a. prefix tree) data-structure T to efficiently
identify the best-escape positions, during the computation of the operator prg+.
Finally, the set-theoretic operations of membership and emptiness can easily
be computed in constant time when indicator function (a.k.a., characteristic
function or bitset) representations of the sets are available. Analogously, unions
and intersections of two sets require linear time in the size of the smaller set.

Algorithm 2 reports the procedural implementation of sol(ϱ0), where ϱ0 is the
smallest possible qdr, as defined at Line 1. Line 2 is used to initialise, for each
⊟-position v ∈ Ps⊟, the counter c(v) to the number of adjacents u ∈ Mv(v) of v
that satisfy the progress inequality µϱ0

(v) ≥ µϱ0
(u)+ v, used by the algorithms

that compute the operators prg0 and prg+.
At the beginning of each iteration i ∈ N of the while-loop at Line 4, the

variable ϱ maintains the qdr ϱi computed by applying i times the composition
prg+ ◦ prg0, starting from ϱ0. Moreover, the sets N0 and N+ contain, respec-
tively, the positions that need to be lifted by prg0 and the non-progress positions
in ϱi. This last property is formalised by the following invariants that hold at

1After a detailed analysis of the proposed algorithm, one can observe that there is actually
no need to have three distinct counters; however, for the sake of presentation, we prefer to
distinguish the values by their associated intuitive semantics.
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Algorithm 3: Efficient Progress Zero Operator

signature prg0 : 2
Ps → 2Ps × 2Ps

procedure prg0(N)
1 ϱ← sup{ϱ, lift(ϱ,N,Ps)}
2 c← c[v ∈ N ∩ Ps⊟ 7→ |{u ∈ Mv(v) |µϱ(v) ≥ µϱ(u) + v}|]
3 Z← ∅
4 foreach (v, u) ∈ Mv ; u ∈ N; µϱ(v) < µϱ(u) + v do
5 Z← add0(Z, v)

6 return (Z ∩ µ−1
ϱ (0),Z \ µ−1

ϱ (0))

signature add0 : 2
Ps × Ps→ 2Ps

procedure add0(Z, v)
7 if v ∈ Ps⊕ then
8 Z← Z ∪ v

else
9 if v ̸∈ N ∧ µϱ(v) ≥ 0 + v then c(v)← c(v)− 1

10 if c(v) = 0 then Z← Z ∪ v

11 return Z

Line 4: N0 =
{
v ∈ Ps

∣∣µϱi(v) = 0 ̸= µϱi+1(v)
}
and N+ = npp(ϱi). Observe that

these invariants are trivially satisfied for i = 0, thanks to Line 3. Each iteration
of the loop applies in sequence the operators prg0 and prg+, computed by Algo-
rithms 3 and 5, respectively. Each of those algorithm returns a pair of sets that
collect positions that change their status, as consequence of the application of
the corresponding operator. Specifically, the first set collects the newly discov-
ered positions with measure zero (i.e., outside the current qdr) that need to
be lifted in the next iteration, while the second one contains newly discovered
positions that do not satisfy the progress condition in the qdr identified by the
resulting measure function. After the execution of the progress procedure prg0
at Line 5, we have that N0 ⊆

{
v ∈ Ps

∣∣µϱi+1(v) = 0 ̸= µϱi+2(v)
}
and N+ ∪A =

npp(ϱ⋆i), where ϱ⋆i≜ prg0(ϱi). Thus, Line 6 collects in N+ all the non-progress
positions in ϱ⋆i. Line 7 calls the progress procedure prg+ and forces the lift of the
measures of all the positions in ∆(ϱ⋆i), as stated by Lemma 3. In addition, the
verified invariants are N0 ∪ A =

{
v ∈ Ps

∣∣µϱi+1(v) = 0 ̸= µϱi+2(v)
}
and N+ =

npp(ϱi+1). Finally, as required by the previously discussed invariants for the
next iteration i+1, after Line 8 we have N0 =

{
v ∈ Ps

∣∣µϱi+1
(v) = 0 ̸= µϱi+2

(v)
}
.

The operators prg0 and prg+ are computed by Algorithms 3 and 5, while
Algorithm 4 shows how to compute the operator ∆ efficiently. Both the current
qdr ϱ and the vector of counters c are shared among all the algorithms, including
Algorithm 2, as global variables.

Algorithm 3 first computes the lift operation on all the positions contained in
its input set N (Line 3) and, then, identifies the new positions that will be lifted
either by the next application of prg0, namely Z ∩ µ−1

ϱ (0), or by the subsequent
application of prg+, namely Z \ µ−1

ϱ (0).
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To do so, it first reinitialises the counter for the positions just lifted (Line 4)
and, then, for each of their incoming moves (Line 5), verifies if there exists a
new position whose measure needs to be increased. The case of an incoming
⊕-move is trivial (Lines 6-7). Therefore, let us consider the opponent player. A
position v ∈ Ps⊟ needs to be lifted only if µϱ(v) < µϱ(u) + v, for all adjacents
u ∈ Mv(v). Therefore, we decrement the associated counter (Line 8) every time
a non-progress move is identified that previously satisfied the progress condition
w.r.t. the unlifted qdr. When the counter reaches zero, the above condition is
satisfied and the considered position needs to be lifted in the next iteration
(Line 9).

Proposition 6. Algorithm 3 on input a set of positions N requires time

O

(∑
v∈N

(|Mv(v)|+ |Mv−1(v)|) · logS

)
.

Proof. The number of iterations of the while loop is clearly bounded by the
number of moves entering N, i.e.,

∑
v∈N |Mv−1(v)|. Each iteration of the loop

can be computed in time bounded by O
(∑

v∈N |Mv−1(v)| · logS
)
, which cor-

responds to the total time needed for the arithmetic operations in the condi-
tion at Line 8. The cost of Line 2 is O(|N | · logS), where each assignment
requires time O(logS). Line 3, instead, iterates over the moves exiting from
the positions in N, therefore its cost is bounded by O

(∑
v∈N |Mv(v)| · logS

)
,

where the factor logS is due to the arithmetic operations of the lift opera-
tor. Line 4 counts the number of moves exiting from ⊟-positions in N sat-
isfying an arithmetic condition on the measures, thus requiring again time
O
(∑

v∈N |Mv(v)| · logS
)
. The total time required by the algorithm is, therefore,

O
(∑

v∈N(|Mv(v)|+ |Mv−1(v)|) · logS
)
.

Algorithm 4 computes the weak quasi dominion ∆(ϱ), starting from the
set N = npp(ϱ), which contains all the non-progress positions in qsi(ϱ). The
implementation almost precisely follows the functional definition of the two
operators ∆ and pre, except that it keeps the whole computation cost linear in
the number of incoming moves in each position contained in the resulting set.

To do so, it exploits the same tricks used in the previous procedure, by
employing a counter d for the ⊟-positions. Note that, d contains a copy of the
values in c.

Finally, Algorithms 5 and 6 implement the procedure described in Algo-
rithm 1. It first computes the weak quasi dominion ∆(ϱ), by calling Algo-
rithm 4 (Line 2). After that, it identifies its escape positions and the associated
forfeit, in order to identify the set of best-escape positions that need to be lifted
(Line 4). To do so, we employ a binary trie T, which will contain at most S
different forfeit values during the entire execution of the algorithm. Edges to
the children of each node in the tree are labelled by 0, for the left child, and 1,
for the right one, and each path to a leaf is labelled by the binary representa-
tion of the corresponding forfeit. Positions with the same forfeit are clustered
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Algorithm 4: Efficient Quasi Dominion Operator

signature ∆: 2Ps → 2Ps

procedure ∆(N)
1 Q← ∅
2 while N ̸= ∅ do
3 Q← Q ∪N
4 Z← ∅
5 foreach (v, u) ∈ Mv ; u ∈ N; v ̸∈ (µ−1

ϱ (0) ∪Q) do
6 Z← add∆(Z, (v, u))

7 N← Z

8 return Q

signature add∆ : 2Ps ×Mv → 2Ps

procedure add∆(Z, (v, u))
9 if v ∈ Ps⊕ then

10 if σϱ(v) = u then Z← Z ∪ v

else
11 if µϱ(v) ≥ µϱ(u) + v then c(v)← c(v)− 1
12 if c(v) = 0 then Z← Z ∪ v

13 return Z

together and associated with that value at the corresponding leaf in the trie.
Inserting a position with a given forfeit in the trie requires traversing a path
in the tree following the edges labelled by the corresponding bit in the binary
representation of the forfeit. Therefore, the time required for insertion is lin-
ear in the length of this binary representation, namely O(logS). Extraction of
the set of positions with the minimal forfeit in T simply requires accessing the
leaf reached by following the leftmost path in the tree and can be done in time
O(logS) as well.

The while-loop at Line 6 simulates the while-loop at Line 2 of Algorithm 1,
where instructions at Lines 7-10 here precisely correspond to those at Lines 3-5
in the original algorithm. Note that the trie T is allowed to contain multiple
copies of a position v in different nodes of the trie, one for each move from that
position in the worst case. Hence, there can be at most |Mv(v)| copies of the
same position in T. For this reason, Line 8 discards from E copies of positions
already processed in some previous iteration of the loop that have already been
removed from Q. After the measure update of the best-escape positions in E,
the associated counters in c are reinitialised (line 11). At this point, an analysis
on the incoming moves of E takes place (Line 12). For all moves (v, u) ∈ Mv
with u ∈ E and v ̸∈ Q, the algorithm performs, at Lines 18-23, almost exactly
the same operations done by Algorithm 3 at Lines 6-9. The only difference
here is that ⊟-positions can only be forced to lift their measure if they are not
yet contained in the quasi dominion qsi(ϱ). The case v ∈ Q, instead, identifies
a possible discovering of a new escape of the remaining weak quasi dominion
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Algorithm 5: Efficient Progress Plus Operator

signature prg+ : 2Ps → 2Ps × 2Ps

procedure prg+(N)
1 Q← ∆(N)
2 µ̂← {v ∈ Q 7→ µϱ(v)}
3 T← {(v, bef(µϱ,Q, v)) ∈ esc(ϱ,Q)× N}
4 c← {v ∈ Q ∩ Ps⊕ 7→

|{u ∈ Mv(v) ∩Q |σϱ(v) = u ∨ µϱ(v) < µϱ(u) + v}|}
5 Z← ∅
6 while T ̸= ∅ do
7 (E,T)← extmin(T)
8 E = E ∩Q

9 ϱ← lift(ϱ,E,Q)
10 Q← Q \ E
11 c← c[v ∈ E ∩ Ps⊟ 7→ |{u ∈ Mv(v) |µϱ(v) ≥ µϱ(u) + v}|]
12 foreach (v, u) ∈ Mv ; u ∈ E do
13 if v ∈ Q then
14 if v ∈ Ps⊟ then
15 T← T ∪ (v, µϱ(u) + v − µϱ(v))

else
16 if σϱ(v) = u ∨ µϱ(v) < µ̂(u) + v then c(v)← c(v)− 1
17 if c(v) = 0 then T← T ∪ (v, bef(µϱ,Q, v))

18 else if µϱ(v) < µϱ(u) + v then
19 Z← add+(Z, (v, u))

20 ϱ← win(ϱ,Q)
21 foreach (v, u) ∈ Mv ; u ∈ Q do
22 Z← add+(Z, (v, u))

23 return (Z ∩ µ−1
ϱ (0),Z \ µ−1

ϱ (0))

(Line 13). If v ∈ Ps⊟, this is obviously an escape from Q, thus, it needs to
be added to the trie T paired with the associated best-escape forfeit computed
along the move (v, u) (Lines 14-15).

The case v ∈ Ps⊕ is more complicated, since a ⊕-position is an escape iff
its current strategy exits from Q and it has no move within Q that allows an
increase of its measure. To do this check, once again, we employ the counter
trick, where this time we associate with a ⊕-position in ∆(ϱ) the number of
moves that satisfy the above property (Line 5). If the move (v, u) satisfies the
property w.r.t. the unlifted qdr (i.e., before the lift of u occurs), then the
corresponding counter g(v) is decreased (Line 16). When the counter reaches
value 0, the position is necessarily an escape, so, it is added to the trie paired
with its best possible forfeit (Line 17). Line 24 calls the win function in order
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Algorithm 6: Efficient Progress Plus Operator

signature add+ : 2Ps ×Mv → 2Ps

procedure add+(Z, (v, u))
1 if v ∈ Ps⊕ then
2 Z← Z ∪ v

3 else if µϱ(v) = 0 then
4 if µ̂(u) + v ≤ 0 then c(v)← c(v)− 1
5 if c(v) = 0 then Z← Z ∪ v

6 return Z

to identify a possible new ⊕-dominion. Finally, Lines 25-30 update both the set
of positions Z to be lifted in the next iteration and the counter c, by executing
exactly the same instructions as those at Lines 19-23 on the moves that reach
the dominion Q.

Proposition 7. Algorithm 5 on input a set of positions N requires time

O

 ∑
v∈∆(N)

(|Mv(v)|+ |Mv−1(v)|) · logS

 .

Proof. First observe that the set ∆(N) is assigned to Q at Line 2. Clearly,
Lines 1-3 and 5 can be computed in time O(|Mv(Q)| · logS). As to Line 4,
assuming a indicator function representation of Q and Ps⊕, that allows for
set-membership tests in constant time, checking if a position v is an escape
position and the computation of its best-escape forfeit can be done in time
O(|Mv(v)| · logS). Finally, the insertion in T requires time O(logS), assuming
a trie representation of T. Hence, the total time upper bound for Line 4 is
O(|Mv(Q)| · logS) as well.

Let us consider the loop at Lines 6-23. First, observe that, during the loop,
at most Mv(Q) distinct elements can be contained in T, as there can be at
most Mv(Q) different forfeit, one for each move outgoing from a position in Q.
Each extraction of the minimal element from T (Line 7) requires time O(logS),
and O(|Mv(Q)| · logS) overall. Line 8 discards all the copies of positions that
have already been processed (i.e., escaped from Q) in some previous iteration.
Therefore, the successive operations in the loop are executed at most once for
each position in Q. In particular, the cost of the operations in Lines 9-11, for
each position v ∈ Q, is bounded by O(|Mv(v)| · logS).

The inner loop at Lines 12-23, is executed at most once for each move en-
tering a position in Q. The cost of every operation in the body of this loop is
clearly bounded by the cost of Line 15, which is O(logS). Hence, the overall
cost of the loop is O

(
|Mv−1(v)| · logS

)
.

The computation of the operator win at Line 24, which sets the resid-
ual positions in Q as winning for player ⊕ and computes the correspond-
ing winning strategy by inspecting the outgoing moves, clearly requires time
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O(|Mv(Q)| · logS). Finally, the loop at Lines 25-31 examines the moves enter-
ing Q. The most expansive operation for each such move is the tests at Line 29,
which requires time O(logS), leading to a total time O

(
|Mv−1(Q)| · logS

)
. The

thesis, then, follows.

We can now establish the following result.

Theorem 7 (Complexity). QDPM requires time

O(n ·m ·min{W, (n− 1)!} · log(n ·W ))

to solve an MPG with n positions, m moves, and maximal positive weight W .

Proof. We know from Proposition 6 and Proposition 7 that the procedures
prg0(ϱ, c,N0) and prg+(ϱ, c,N+) require time

O

(∑
v∈N0

(|Mv(v)|+ |Mv−1(v)|) · logS

)
and

O

 ∑
v∈∆(ϱ)

(|Mv(v)|+ |Mv−1(v)|) · logS

 ,

respectively, where npp(ϱ) = N+. In particular, the factor logS is due to all the
arithmetic operations required to compute the stretch of the measures. Since
during the entire execution of the algorithm each position v ∈ Ps can appear at
most once in some N0 and at most Z = O(n ·min{W, (n− 1)!}) times in some
∆(ϱ), it follows that the total cost of Algorithm 2 is

O

(
n+ (Z + 1) ·

∑
v∈Ps

(|Mv(v)|+|Mv−1(v)|) · logS

)
= O(n+ Z ·m · logS) =

O(n ·m ·min{W, (n− 1)!} · log(n ·W )) ,

where the term n in the sum is due to the initialisation operations at Lines 1-
3.

6. Experimental Evaluation

In order to assess the effectiveness of the proposed approach we imple-
mented the novel algorithm QDPM, the Optimal Strategy Improvement algo-
rithm (OSI by Schewe (2008)), the Small Energy Progress Measure algorithm
(SEPM by Brim et al. (2011)) and DKZ, the algorithm proposed by Dorfman
et al. (2019). 2 These are the most efficient known solutions to the problem

2The algorithm proposed by Dorfman et al. (2019) presents few inaccuracies that make it
incorrect. We implemented here the fixed version described in the technical report by Austin
and Dell’Erba (2023).
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and the more closely related ones to QDPM. All the algorithms have been
implemented in C++ within the framework Oink from van Dijk (2018), which
was originally developed as a tool to compare parity game solvers. However,
extending the Oink to deal with MPGs is not difficult. The form of the arenas
of the two types of games essentially coincide, the only relevant difference being
that MPGs allow negative numbers to label game positions. We ran the solvers
against randomly generated MPGs of various sizes.3

10−2.6 10−2.4 10−2.2 10−2 10−1.8

10−2

10−1

100

101

102

103

104

105

×1

×10

×102

×103

×104

×105

×106

×107

QDPM

S
E
P
M

(a) Comparison of QDPM and SEPM.
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Figure 5: Comparisons on random games with 5000 positions.

In the first benchmark set reported in Figures 5a and 5b we compare the
solution time, expressed in seconds, of QDPM against SEPM and OSI respec-
tively, on 4000 games, each with 5000 positions and randomly assigned weights
in the range [−15000, 15000]. The scale of both axes is logarithmic. The exper-
iments are divided in 4 clusters, each containing 1000 games. The benchmarks
in different clusters differ in the maximal number m of outgoing moves per po-
sition, with m ∈ {10 (grey), 20 (black), 40 (blue), 80 (red)}. These experiments
clearly show that QDPM substantially outperforms SEPM. Most often, the
gap between the two algorithms is between two and three orders of magnitude,
as indicated by the dashed diagonal lines. It also shows that SEPM is par-
ticularly sensitive to the density of the underlying graph, as its performance
degrades significantly as the number of moves increases. The maximal solution
time was 8940 sec. for SEPM and 0.5 sec. for QDPM. The gap with OSI,
instead, remains essentially constant at about one order of magnitude.

Figure 6a, instead, compares QDPM and SEPM fixing the maximal out-
degree of the underlying graphs to 2, while in Figure 6b the maximal out-degree
is 40. In both figures, the number of positions goes from 103 to 105 along the

3The experiments were carried out on a 64-bit 3.9GHz quad-core machine, with Intel
i5-6600K processor and 8GB of RAM, running Ubuntu 18.04.
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Figure 6: Total solution times in seconds of SEPM and QDPM on 2800 random games.

x-axis, while the y-axis represents the solution time in seconds. The pictures
display the performance results on 2800 games. Each point shows the total time
to solve 100 randomly generated games with that given number of positions,
which increases by 1000 up to size 2 · 103 and by 10000, thereafter. In both
pictures the scale is logarithmic. For the experiments in Figure 6a we had to set
a timeout for SEPM to 45 minutes per game, which was hit most of the times
on the bigger instances.
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Figure 7: Total solution times in seconds of OSI and QDPM on 2800 random games.

Once again, the QDPM significantly outperforms SEPM on both kinds
of benchmarks, with a gap of more than an order of magnitude on the first
ones, and a gap of more than three orders of magnitude on the second ones.
The results also confirm that the performance gap grows considerably as the
number of moves per position increases.

On the same benchmarks, Figures 7a and 7b compare, instead, QDPM
and OSI. Also in this case QDPM outperforms OSI. However, while for games
with two moves per position the gap between the two algorithms is rather small,

28



games with a higher number of moves per positions proved to be much easier
to solve for QDPM, and, on such games the gap with QDPM significantly
increases at about one order of magnitude.

1 2 3 4 5 6 7 8 9 10103

104

105

106

107

108

109

1010

1011

1012

QDPM
SEPM

DKZUPD
DKZTOT

(a) Games with two moves per position.
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(b) Games with 40 moves per position.

Figure 8: Arithmetic operations of DKZ, SEPM and QDPM on 2000 random games.

Figures 8a and 8b compare QDPM with both SEPM and DKZ, this time
reporting the number of arithmetic operations, corresponding to updates of the
measures of the game positions, required to obtain the solution. This is a par-
ticularly interesting performance measure as it does not depend on the concrete
implementation but only on the actual solution techniques. More specifically,
the charts report the overall number of operations that each solver requires to
solve the 100 games tested for each size, for a total of 2000 randomly generated
games. The size ranges from 103 to 104 positions with 2 (on the left) and 40
(on the right) outgoing moves per positions. The benchmarks are composed
of the same games used in the previous charts, except that we limit the max-
imal size to 104. Also in this case, the results on the y-axis are depicted on
a logarithmic scale. For DKZ we report the number of measure update op-
erations (DKZUPD), as well as the total number of of arithmetic operations
(DKZTOT) that also includes the weight halving operations performed by the
recursive calls of the algorithm.

Depending on the class of benchmarks, the experiments show that the be-
haviour of DKZ is much closer to SEPM’s in terms of number of operations and
is typically worse on games with small number of moves, but slightly better on
games with higher number of moves, which are usually simpler for all the solver.
Clearly, the number of operations directly correlates with solution times, hence
the higher the number of operation is, the higher the solution time becomes.
However, it is worth noting that even when the number of operations required
by SEPM is higher, the solver is usually about as fast as DKZ in practice, as it
does not incur in the computational overhead that the latter requires in order
to guarantee its theoretical upper bound on computation time. On the most
difficult games with two moves per position, in particular, the gap in solution
time between the two algorithms can go up to three orders of magnitude in
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favour of SEPM. These results seem to suggest that while interesting from a
theoretical standpoint, the approach followed by DKZ is not likely to translate
into meaningful performance uplift compared to SEPM, let alone QDPM or
OSI, in most application scenarios.

Benchmark Positions Moves SEPM DKZ QDPM OSI

Elevator 1 144 234 0.04 0.0001 0.0002 0.0002
Elevator 2 564 950 8.80 0.14 0.0007 0.0006
Elevator 3 2688 4544 4675.71 10.95 0.0062 0.0028
Elevator 4 15683 26354 × ⊥ 0.0528 0.0379

Lang. Incl. 1 170 1094 3.18 0.056 0.0002 0.0003
Lang. Incl. 2 304 1222 16.76 0.7 0.0002 0.0004
Lang. Incl. 3 428 878 20.25 40.59 0.0002 0.0004
Lang. Incl. 4 628 1538 135.51 274.89 0.0003 0.0006
Lang. Incl. 5 509 2126 148.37 ⊥ 0.0003 0.0005
Lang. Incl. 6 835 2914 834.90 30.19 0.0005 0.0010
Lang. Incl. 7 1658 4544 2277.87 ⊥ 0.0002 0.0009
Lang. Incl. 8 14578 17278 × ⊥ 0.0008 0.0064
Lang. Incl. 9 25838 29438 × ⊥ 0.0015 0.0137
Lang. Incl. 10 29874 34956 × ⊥ 0.0063 0.0424

Table 1: Experiments on concrete verification problems.

We are not aware of actual concrete benchmarks for MPGs. However, ex-
ploiting the standard encoding of parity games into mean-payoff games of Ju-
rdziński (1998), we can compare the behaviour of the algorithms on concrete
verification problems encoded as parity games. For completeness, Table 1 re-
ports some experiments on such problems. The table reports the execution
times, expressed in seconds, required by the algorithms to solve instances of two
classic verification problems: the Elevator Verification and the Language Inclu-
sion problems. These two benchmarks are included in the PGSolver toolkit,
see Friedmann and Lange (2009), and are often used as benchmarks for parity
games solvers. The first benchmark is a verification under fairness constraints of
a simple model of an elevator, while the second one encodes the language inclu-
sion problem between a non-deterministic Büchi automaton and a deterministic
one. In the table, the symbol × indicates that the solver hit the time-out, set
at 5000 seconds, before finding a solution. The symbol ⊥, instead, is used to
indicate that the solver could not solve the game due to an overflow error. This
happens only to DKZ, which needs to perform a preprocessing of the game to
add a fictitious position with incoming moves with weight −2nW , where n is
the number of postisions and W the maximum weight value. For large enough
instances of these concrete games, the preprocessing computes weight values
that are too big to fit into a long integer, causing an overflow error.

The results on various instances of those problems confirm that QDPM
significantly outperforms both SEPM and DKZ, while trading blows with OSI.
Note also that the translation into MPGs, which encodes priorities as weights
whose absolute value is exponential in the values of the priorities, leads to
games with weights of high magnitude. Hence, the results in Table 1 provide
further evidence that QDPM is far less dependent on the absolute value of the
weights. They also show that QDPM can be very effective for the solution of
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real-world qualitative verification problems. It is worth noting, though, that the
translation from parity to MPGs gives rise to weights that are exponentially
distant from each other, see Jurdziński (1998). As a consequence, the resulting
benchmarks are not necessarily representative of MPGs, being a very restricted
subclass. Nonetheless, they provide evidence of the applicability of the approach
in practical scenarios.

7. Discussion

We proposed a novel solution algorithm for the decision problem of MPGs
that integrates progress measures and quasi dominions. We argue that the
integration of these two concepts may offer significant speed up in convergence
to the solution, at no additional computational cost. This is evidenced by the
existence of a family of games on which the combined approach can perform
arbitrarily better than a classic progress measure based solution. Experimental
results also show that the introduction of quasi dominions can often reduce
solution times up to three order of magnitude, suggesting that the approach
may be very effective in practical applications as well. We believe that the
integration approach we devised is general enough to be applied to other types
of games. In particular, the application of quasi dominions in conjunction with
progress measure based approaches, such as those of Jurdziński and Lazic (2017)
and Fearnley et al. (2017), may lead to practically efficient quasi polynomial
algorithms for parity games and their quantitative extensions.
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Appendix A. Proofs

Theorem 1 (Progress Measure). ∥µ∥⊟ ⊆Wn⊟, for all progress measures µ.

Proof. Consider a ⊟-strategy σ⊟ ∈ Str⊟ for which all measures µ(v) of positions
v ∈ ∥µ∥⊟∩Ps⊟ are a progress at v w.r.t. the measures µ(σ⊟(v)) of their adjacents
σ⊟(v), formally, µ(σ⊟(v))+v ≤ µ(v). The existence of such a strategy is ensured
by the fact that µ is a progress measure. Indeed, by Condition 2 of Definition 2,
there necessarily exists a adjacent u⋆∈ Mv(v) of v such that µ(u⋆) + v ≤ µ(v).
Now, it can be shown that σ⊟ is a winning strategy for player ⊟ from all
the positions in ∥µ∥⊟, which implies that ∥µ∥⊟ ⊆ Wn⊟. To do this, let us
consider a ⊕-strategy σ⊕ ∈ Str⊕ and the associated play π = play((σ⊕, σ⊟), v)
starting at a position v ∈ ∥µ∥⊟. Assume, by contradiction, that π is won by
player ⊕. Since the game ⅁ is finite, π must contain a finite simple cycle, and
so a finite simple path, with strictly positive total weight sum. In other words,
there exist two natural numbers h ∈ N and k ∈ N+ such that (π)h = (π)h+k

and wg(ρ) =
∑h+k−1

i=h wg((π)i) > 0, where ρ≜((π)≥h)<h+k is the simple path
named above. Now, recall that, ((π)i, (π)i+1) ∈ Mv , for all indexes i ∈ N. Thus,
by both conditions of Definition 2, and the notion of play, we have that

µ((π)i+1) + (π)i ≤ µ((π)i).

Via a trivial induction, it is immediate to see that µ((π)i) ≤ S, where

S≜
∑
{wg(v) ∈ N | v ∈ Ps ∧ wg(v) > 0} <∞

for all i ∈ N, since µ((π)0) = µ(v) ̸= ∞, being v ∈ ∥µ∥⊟. As a consequence,
due to the definition of the measure stretch operator, it holds that

µ((π)i+1) + wg((π)i) ≤ µ((π)i) ≤ S.

Hence, by summing together all the inequalities having indexes i ∈ N with
h ≤ i < h+ k, we obtain

h+k∑
i=h+1

pfµ((π)i) +
h+k−1∑
i=h

wg((π)i) ≤
h+k−1∑
i=h

pfµ((π)i) <∞,

which simplifies in wg(ρ) =
∑h+k−1

i=h wg((π)i) ≤ 0, since pfµ((π)h+k) = pfµ((π)h).
However, this contradicts the above assumption wg(ρ) > 0. Therefore, σ⊟ is a
winning strategy for player⊟ on ∥µ∥⊟ as required by the theorem statement.

Lemma 1. µϱ is a progress measure over qsi(ϱ), for all fixpoints ϱ of prg0.

Proof. By definition of the progress operator prg0, we have that

ϱ = prg0(ϱ) = sup{ϱ, lift(ϱ, qsi(ϱ),Ps)}

from which we derive ϱ⋆≜ lift(ϱ, qsi(ϱ),Ps) ⊑ ϱ. Now, consider an arbitrary po-
sition v ∈ qsi(ϱ) and observe that µϱ⋆(v) ≤ µϱ(v), due to Item 2 of Definition 4.
At this point, the proof proceeds by a case analysis on the owner of the position
v itself.
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• [v ∈ Ps⊕]. By definition of the lift operator, we have that

µϱ(u) + v ≤ max {µϱ(u) + v |u ∈ Mv(v)} = µϱ⋆(v)

for all adjacents u ∈ Mv(v) of v. Thus, µϱ(u)+v ≤ µϱ⋆(v) ≤ µϱ(v), thanks
to the above observation. Consequently, Condition 1 of Definition 2 is
satisfied on qsi(ϱ).

• [v ∈ Ps⊟]. Again by definition of the lift operator, we have that

µϱ(u) + v ≤ min {µϱ(u) + v |u ∈ Mv(v)} = µϱ⋆(v)

for some adjacent u ∈ Mv(v) of v. Due to the above observation, it holds
that µϱ(u) + v ≤ µϱ⋆(v) ≤ µϱ(v). Hence, Condition 2 of Definition 2 is

satisfied on qsi(ϱ) as well.

Lemma 2. µϱ is a progress measure over qsi(ϱ), for all fixpoints ϱ of prg+.

Proof. Let us consider the infinite monotone sequence of position sets Q0 ⊇
Q1 ⊇ . . . defined as follows: Q0 ≜∆(ϱ); Qi+1 ≜Qi \ Ei, where Ei ≜ bep(ϱ,Qi),
for all i ∈ N. Since |Q0| < ∞, there necessarily exists an index k ∈ N such
that Qk+1 = Qk. By definition of the progress operator prg+ and the equality

ϱ = prg+(ϱ), we have that ϱ = lift(ϱ,Ei,Qi), for all i ∈ [0, k), and ϱ = win(ϱ,Qk).
Now, consider an arbitrary position v ∈ qsi(ϱ). If v ̸∈ ∆(ϱ), due to the definition
of the set ∆(ϱ), the position v satisfies by definition of the appropriate condition
of Definition 2 on qsi(ϱ). Therefore, let us assume v ∈ ∆(ϱ). Then, it is obvious
that either v ∈ Qk or there is a unique index i ∈ [0, k) such that v ∈ Qi \Qi+1,
i.e., v ∈ Ei. In the first case, we have µϱ(v) = ∞, due to the definition of the
function win. Therefore, v is a progress position. In the other case, the proof
proceeds by a case analysis on the owner of the position v itself.

• [v ∈ Ps⊕]. First observe that bep(ϱ,Qi) ⊆ esc(ϱ,Qi). Thus, due to the
definition of the function esc, we have that µϱ(u) + v ≤ µϱ(v), for all
positions u ∈ Mv(v) ∩ Qi. Now, by the definition of the lift operator, we
have that µϱ(u) + v ≤ max

{
µϱ(u) + v

∣∣u ∈ Mv(v) ∩Qi

}
= µϱ(v), for all

adjacents u ∈ Mv(v) ∩ Qi of v. Consequently, µϱ(u) + v ≤ µϱ(v), for all
positions u ∈ Mv(v), as required by Condition 1 of Definition 2 on qsi(ϱ).

• [v ∈ Ps⊟]. Again by definition of the lift operator, we have that

µϱ(u) + v ≤ min
{
µϱ(u) + v

∣∣u ∈ Mv(v) ∩Qi

}
= µϱ(v)

for some adjacent u ∈ Mv(v) ∩ Qi ⊆ Mv(v) of v. Hence, Condition 2 of
Definition 2 is satisfied on qsi(ϱ) as well.

Theorem 2. The operators prg0 and prg+ are total inflationary functions.
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Proof. The proof proceeds by showing that, for each ϱ ∈ R, the elements prg0(ϱ)
and prg+(ϱ) are qdr too. We also prove that ϱ ⊑ prg0(ϱ) and ϱ ⊑ prg+(ϱ). The
two operators are analysed separately.

• [prg0]. Let ϱ⋆≜ prg0(ϱ) = sup{ϱ, lift(ϱ, qsi(ϱ),Ps)} ⊒ ϱ. It is obvious,
so, that prg0 is inflationary. Consider now a position v ∈ qsi(ϱ⋆). Re-
call that µϱ⋆(v) > 0. If v ∈ qsi(ϱ), by definition of the lift operator,
it holds that µϱ⋆(v) = µϱ(v) and σϱ⋆(v) = σϱ(v), thus the appropri-
ate condition between Conditions 1c and 1d of Definition 4 is verified,
since ϱ ∈ R. Thus, assume v ∈ qsi(ϱ). If v ∈ Ps⊕, we have that
µϱ⋆(v) = max {µϱ(u) + v |u ∈ Mv(v)} = µϱ(σϱ⋆(v)) + v = µϱ⋆(σϱ⋆(v)) + v,
since σϱ⋆(v) ∈ qsi(ϱ). As a consequence, Condition 1c is satisfied. If
v ∈ Ps⊟, instead, we have that µϱ⋆(v) = min {µϱ(u) + v |u ∈ Mv(v)},
which implies µϱ⋆(v) ≤ µϱ(u)+v = µϱ⋆(u)+v, for all adjacents u ∈ Mv(v),
as required by Condition 1d. To complete the proof that prg0 is a total
function from R to itself, we need to show that ϱ⋆ satisfies Conditions 1b
and 1a too. It is immediate to see that ∥µϱ∥⊕ ⊆ ∥µϱ⋆∥⊕. Since ϱ is a qdr,
∥µϱ∥⊕ is a ⊕-dominion. Moreover, for all positions v ∈ ∥µϱ⋆∥⊕ \ ∥µϱ∥⊕,
it holds that σϱ⋆(v) ∈ ∥µϱ∥⊕, if v ∈ Ps⊕, and Mv(v) ⊆ ∥µϱ∥⊕, otherwise.
Therefore, ∥µϱ⋆∥⊕ is necessarily a ⊕-dominion, so Condition 1b is verified.
Finally, let us focus on Condition 1a and consider a (σϱ⋆, v)-play vπ. If, on
the one hand, π is infinite and does not meet v, thanks to Proposition 1,
we have wg(π) = ∞, thus wg(vπ) = ∞ and, so, wg(vπ) > 0. If π is
finite, instead, it holds that lst(π) ∈ esc(ϱ, qsi(ϱ)) and, so, µϱ⋆(lst(π)) =
wg(lst(π)), due to Proposition 4. Now, by Proposition 2, we have that
µϱ(fst(π)) ≤ µϱ(lst(π)) + wg(π<ℓ−1) = wg(lst(π)) + wg(π<ℓ−1) = wg(π),
where ℓ ∈ N is the length of π Moreover, 0 < µϱ(v) ≤ µϱ(fst(π)) + v =
µϱ(fst(π))+wg(v), thanks to the previously proved Conditions 1c and 1d.
Hence, 0 < µϱ(v) ≤ µϱ(fst(π)) + wg(v) ≤ wg(v) + wg(π) = wg(vπ), as
required by the definition of quasi ⊕-dominion. Finally, if π is infinite
and does meet v, it can be decomposed as (vπ′)ω, where π is a non-empty
finite path that does not meet v. Then, by exploiting the same reasoning
done above for the case where π is finite, we have that wg(vπ′) > 0, which
implies wg(π) = wg((vπ′)ω) =∞.

• [prg+]. Let ϱ
⋆≜ prg+(ϱ) and consider the two infinite monotone sequences

Q0 ⊇ Q1 ⊇ . . . and ϱ0 ⊑ ϱ1 ⊑ . . . defined as follows: Q0 ≜∆(ϱ) and
ϱ0 ≜ ϱ; Qi+1 ≜Qi \Ei and ϱi+1 = lift(ϱi,Ei,Qi), where Ei ≜ bep(ϱi,Qi) ⊆
esc(ϱi,Qi), for all i ∈ N. Since |Q0| < ∞, there necessarily exists an
index k ∈ N such that Qk+1 = Qk, ϱk+1 = ϱk. Moreover, observe that
ϱ⋆ = win(ϱk,Qk). We first prove, by induction on the index i ∈ N of the
sequences, that every ϱi satisfies Conditions 1a and 1c of Definition 4.
Finally, we show that ϱ⋆ is a qdr.

The base case i = 0 is trivial, since ϱi = ϱ is a qdr. Now, let us consider
the inductive case i > 0. Since the lift operator only modifies the measure
of positions belonging to Ei−1 ⊆ Qi−1 ⊆ ∆(ϱ) ⊆ qsi(ϱ), it immediately
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follows that qsi(ϱi) = qsi(ϱi−1) = qsi(ϱ). Moreover, if σϱi(v) ̸= σϱi−1(v),
we have that µϱi−1(v) < µϱi(v) = µϱi(σϱi(v)) = µϱi−1(σϱi(v)), for all
positions v ∈ qsi(ϱi) ∩ Ps⊕, where the latter equality is due to the fact
that σϱi

(v) ̸∈ Ei−1. Thus, by Lemma 4, it holds that σϱi
is a ⊕-witness for

qsi(ϱi), i.e., Condition 1a is verified. Also, Condition 1c directly follows
from the definition of the ⊕-strategy inside the lift operator.

At this point, we can conclude the proof by showing that ϱ⋆ is a qdr.
Indeed, by Lemma 4, σϱ⋆ is a ⊕-witness for qsi(ϱk) = qsi(ϱ), so, Condi-
tion 1a is satisfied. Similarly to the inductive analysis developed above,
Condition 1c directly follows from the definition of the ⊕-strategy inside
the win function. Moreover, the set Qk is a closed subset of qsi(ϱk), since
Ek = ∅ and, so, esc(ϱk,Qk) = ∅. Therefore, Qk ⊆ Wn⊕, by Proposi-
tion 1. In addition, all positions in ∥µϱk

∥⊕ \ (∥µ∥⊕∪Qk) necessarily reach
(∥µ∥⊕ ∪Qk) ⊆Wn⊕. As a consequence, Condition 1b is verified as well.

It remains to prove Condition 1d. To do so, let

fi ≜minv∈esc(ϱi,Qi)bef(µϱi
,Qi, v)

We now first show that the sequence of natural numbers f0, f1, . . . is mono-
tone, i.e., fi ≤ fi+1. Suppose by contradiction that fi > fi+1, for some
index i ∈ N. Then, there necessarily exists a position v ∈ esc(ϱi+1,Qi+1)\
esc(ϱi,Qi) with v ∈ Ei+1 such that fi+1 = bef(µϱi+1 ,Qi+1, v) < fi. We
proceeds by a case analysis on the owner of the position v.

– [v ∈ Ps⊕]. By definition of the best-escape forfeit function, we have
that

fi+1= max
{
µϱi+1(u) + v − µϱi+1(v)

∣∣u ∈ Mv(v) \Qi+1

}
≥ µϱi+1(σϱi(v)) + v − µϱi+1(v)

since σϱi
(v) ∈ Ei and, so, σϱi

(v) ̸∈ Qi+1. Therefore, the following
equalities and inequalities hold, which lead to the contradiction fi ≤
fi+1 < fi:

fi+1≥ µϱi+1(σϱi(v)) + v − µϱi+1(v)

= µϱi+1(σϱi(v)) + wg(v)− µϱi+1(v)

= µϱi(σϱi(v)) + fi + wg(v)− µϱi+1(v)

= µϱi(σϱi(v)) + fi + wg(v)− µϱi(v)

= µϱi(σϱi(v)) + v − µϱi(v) + fi

≥ fi.

Notice that the first and last equality are due to the definition of
the measure stretch operator. The second one is derived from the
fact that σϱi

(v) ∈ Ei, while the third one from v ∈ Ei+1, which
implies µϱi+1

(v) = µϱi
(v). Finally, the last inequality follows from

Condition 1c applied to ϱi, i.e., µϱi(v) ≤ µϱi(σϱi(v)) + v.
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– [v ∈ Ps⊟]. Again by definition of the best-escape forfeit function, we
have that fi+1 = min

{
µϱi+1(u) + v − µϱi+1(v)

∣∣u ∈ Mv(v) \Qi+1

}
.

In addition, Mv(v) \ Qi+1 ⊆ Ei Therefore, the following equalities
hold:

fi+1= min
{
µϱi+1

(u) + v − µϱi+1
(v)
∣∣u ∈ Mv(v) \Qi+1

}
= min

{
µϱi+1

(u) + wg(v)− µϱi+1
(v)
∣∣u ∈ Mv(v) \Qi+1

}
= min

{
µϱi

(u) + fi + wg(v)− µϱi+1
(v)
∣∣u ∈ Mv(v) \Qi+1

}
= min{µϱi

(u) + fi + wg(v)− µϱi
(v) |u ∈ Mv(v) \Qi+1}

= min{µϱi
(u) + v − µϱi

(v) + fi |u ∈ Mv(v) \Qi+1}
≥ fi.

Notice that the second and last equality are due to the definition of
the measure stretch operator. The third one is derived from the fact
that u ∈ Mv(v) \ Qi+1 ⊆ Ei, while the fourth one from v ∈ Ei+1,
which implies µϱi+1

(v) = µϱi
(v). Finally, the last inequality follows

from Condition 1d applied to ϱ, i.e., µϱi(v) = µϱ(v) ≤ µϱ(u) + v ≤
µϱi(u) + v, for all adjacents u ∈ Mv(v).

Now suppose by contradiction that Condition 1d does not hold for ϱ⋆.
Then, there exist a ⊟-position v ∈ qsi(ϱ⋆)∩Ps⊟ and one of its adjacents u ∈
Mv(v) such that µϱ⋆(u)+ v < µϱ⋆(v). Due to the process used to compute
ϱ⋆, there are indexes i, j ∈ [0, k] such that µϱ⋆(u) = µϱi+1(u) = µϱ(u) + fi
and µϱ⋆(v) = µϱj+1

(v) = µϱ(v)+fj . Now, by Condition 1d applied to ϱ, we
have µϱ(v) ≤ µϱ(u)+v, which implies that 0 ≤ µϱ(u)+v−µϱ(v) < fj−fi
and, consequently, both i < j and u ̸∈ Qj . However,

fj − fi= min
{
µϱj

(z) + v − µϱj
(v)
∣∣ z ∈ Mv(v) \Qj

}
− fi

≤ µϱj
(u) + v − µϱj

(v)− fi

= µϱj
(u) + v − µϱ(v)− fi

= µϱi+1
(u) + v − µϱ(v)− fi

= (µϱ(u) + fi) + v − µϱ(v)− fi

= µϱ(u) + v − µϱ(v),

leading to the contradiction µϱ(u)+v−µϱ(v) < fj−fi ≤ µϱ(u)+v−µϱ(v).
Notice that the first equality is due to the definition of the best-escape
forfeit function. The second and third ones, instead, follows from the
fact that v and u changed their values at iterations j + 1 and i + 1,
respectively. Finally, the fourth equality derives from the operation of lift
and best-escape forfeit computed on u.

Theorem 3 (Termination). The solver operator sol≜ ifp ϱ . prg+(prg0(ϱ)) is a
well-defined total function. Moreover, for every simple qdr ϱ ∈ R it holds that
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sol(ϱ) = (ifpk ϱ
⋆. prg+(prg0(ϱ

⋆)))(ϱ), for some index k ≤ n · (Z + 1), where n is
the number of positions in the MPG and Z is the number of positive weights of
all its simple paths, i.e., Z ≜ |{wg(π) ∈ N |π ∈ SPth(Ps)}|.

Proof. Consider the sequence ϱ0, ϱ1, . . . recursively defined as follows:

ϱ0 ≜(ifp0 ϱ
⋆. prg+(prg0(ϱ

⋆)))(ϱ) = ϱ

and ϱi+1 ≜(ifpi+1 ϱ
⋆. prg+(prg0(ϱ

⋆)))(ϱ) = prg+(prg0(ϱi)), for all i ∈ N. By
induction on the index i, thanks to the totality and inflationary properties of the
progress operators prg0 and prg+ previously proved in Theorem 2, one can easily
show that every ϱi is a qdr satisfying ϱi ⊑ ϱi+1. Moreover, by Proposition 5,
we have that ϱi(v) ∈ {wg(π) ∈ N |π ∈ SPth(Ps)}, for all positions v ∈ qsi(ϱi)
with ϱi(v) ̸=∞ and index i > 0. Now, there are at most n · (Z + 1) such qdrs,
thus, there necessarily exists an index k ≤ n · (Z + 1) such that ϱk+1 = ϱk,
which implies sol(ϱ) = (ifp ϱ⋆. lift(ϱ⋆))(ϱ) = ϱk. Hence, the thesis immediately
follows.

Theorem 5 (Soundness). ∥sol(ϱ)∥⊟ ⊆Wn⊟, for every ϱ ∈ R.

Proof. Let ϱ⋆≜ sol(ϱ) be the result of the solver operator applied to ϱ ∈ R. By
Lemma 5, it holds that ϱ⋆ = prg0(ϱ

⋆) = prg+(ϱ
⋆). As a consequence, µϱ⋆ is

a progress measure, due to Lemmas 1 and 2. At this point, by recalling that
∥ϱ⋆∥⊟ = ∥µϱ⋆∥⊟, as reported in Definition 4, the thesis is immediately derived
by applying Theorem 1 to µϱ⋆.

Theorem 6 (Completeness). ∥sol(ϱ)∥⊕ ⊆Wn⊕, for every ϱ ∈ R.

Proof. The thesis immediately follows by considering Theorem 3 and Condi-
tion 1b of Definition 4. Indeed, by the statement of the recalled theorem, sol(ϱ)
is a qdr, independently of the element ϱ ∈ R given as input to the solver oper-
ator. Thus, thanks to the above condition, it holds the ∥sol(ϱ)∥⊕ ⊆Wn⊕.

Lemma 3. Let ϱ⋆≜ prg+(ϱ). Then, µϱ⋆(v) > µϱ(v), for all positions v ∈ ∆(ϱ).

Proof. Consider the set E≜ bep(ϱ,∆(ϱ)) ⊆ esc(ϱ,∆(ϱ)) and let ϱ̂≜ lift(ϱ,E,∆(ϱ)).
First observe that µϱ̂(v) = µϱ⋆(v), for all escape positions v ∈ E. We now show
that µϱ⋆(v) > µϱ(v), via a case analysis on the owner of the position v itself.

• [v ∈ Ps⊕]. By definition of the function esc, it holds that σϱ(v) ̸∈ ∆(ϱ) and
µϱ(v) ≥ µϱ(u)+v, for all adjacents u ∈ Mv(v)∩∆(ϱ). Since v ∈ ∆(ϱ), due
to the way this specific weak quasi dominion is constructed, v ∈ npp(ϱ).
Thus, there exists a successor u⋆ ∈ Mv(v) with µϱ(v) < µϱ(u

⋆) + v, from

which it follows that u⋆ ̸∈ ∆(ϱ), i.e., u⋆ ∈ ∆(ϱ). As a consequence, we
obtain that µϱ̂(v) ≥ µϱ(u

⋆) + v > µϱ(v). Hence, µϱ⋆(v) > µϱ(v).

• [v ∈ Ps⊟]. Since v ∈ ∆(ϱ), we have that µϱ(v) < µϱ(u) + v, for all adja-
cents u ∈ Mv(v)\∆(ϱ). Thus, µϱ̂(v) = min {µϱ(u) + v |u ∈ Mv(v) \∆(ϱ)} >
µϱ(v). Hence, µϱ⋆(v) > µϱ(v) in this case as well.
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Now, consider a position v ∈ ∆(ϱ)\E. Obviously, µϱ(v) <∞. If µϱ⋆(v) =∞, the
thesis immediately follows. Otherwise, it will be considered as an escape of some
weak quasi dominion Q ⊂ ∆(ϱ), after the removal of the first escape positions
in E. Due to the non-decreasing property of the sequence of best-escape forfeit
shown in the proof of Theorem 2, v exits from Q with a forfeit f⋆ at least as
great as the one f of E that we just proved to be strictly positive. Indeed,
f = µϱ⋆(z) − µϱ(z) > 0, for all z ∈ E. Therefore, µϱ⋆(v) − µϱ(v) = f⋆≥ f > 0,
which implies µϱ⋆(v) > µϱ(v).

Lemma 4. Let ϱ ∈ R and σ⋆∈ Str⊕(qsi(ϱ)) a ⊕-strategy such that, if σ⋆(v) ̸=
σϱ(v), then µϱ(v) < µϱ(σ

⋆(v)) + v, for all positions v ∈ qsi(ϱ) ∩ Ps⊕. Then, σ⋆

is a ⊕-witness for qsi(ϱ).

Proof. The proof proceed by induction on the number i≜ |D| of the positions
in

D≜ {v ∈ Ps⊕ |σ⋆(v) ̸= σϱ(v)}

on which the two strategies σ⋆ and σϱ differ. The base case i = 0 is immediate,
since ϱ is a qdr. Therefore, assume i > 0, let v ∈ D, and consider the strategy
σ̂ ∈ Str⊕(qsi(ϱ)) such that σ̂(v) = σϱ(v) and σ̂(u) = σ⋆(u), for all positions
u ∈ qsi(ϱ) ∩ Ps⊕ with u ̸= v. By the inductive hypothesis, we have that σ̂
is a ⊕-witness for the quasi dominion qsi(ϱ). Now, consider an arbitrary path
π compatible with the ⊕-strategy σ⋆. If π does not meet v, it is necessarily
compatible with the ⊕-strategy σ̂, thus, wg(π) > 0. If π meets v once, then it
can be decomposed as π′vπ′′, where π′ and π′′ are paths not meeting v, where
only the first can be possibly empty. On the one hand, if π′′ is infinite, by
Proposition 1, we have wg(π′′) = ∞ and, so, wg(π) = wg(π′vπ′′) = ∞. On
the other hand, if π′′ is finite, then, by Propositions 2 and 4, we have that 0 <
µϱ(fst(π

′v)) ≤ wg(π′)+µϱ(lst(π
′v)) = wg(π′)+µϱ(v) and µϱ(fst(π

′′)) ≤ wg(π′′),
since both π′ and π′′ are compatible with σ̂. Moreover, µϱ(v) < µϱ(σ

⋆(v))+v =
µϱ(fst(π

′′)) + v = µϱ(fst(π
′′)) + wg(v). Now, by putting all things together, we

have 0 < µϱ(fst(π
′v)) ≤ wg(π′)+µϱ(v) < wg(π′)+µϱ(fst(π

′′))+wg(v) ≤ wg(π′)+
wg(v)+wg(π′′) = wg(π′vπ′′), i.e., wg(π) > 0. Finally, consider the case where π
meets v more than once and, so, infinitely many times, due to the regularity of
the path, which is in its turn due to the memoryless strategies. Then, π can be
written as π′(vπ′′)ω = π′v(π′′v)ω, where π′ and π′′ are possibly empty paths not
meeting v. First observe that the finite path π′′v is compatible with σ̂, thus, by
Proposition 2, we have that µϱ(fst(π

′′v)) ≤ wg(π′′) + µϱ(v). Moreover, µϱ(v) <
µϱ(fst(π

′′v)) + wg(v), as already shown above. Hence, µϱ(v) < µϱ(fst(π
′′)) +

wg(v) ≤ wg(π′′)+wg(v)+µϱ(v) = wg(π′′v)+µϱ(v), which implies wg(π′′v) > 0.
As a consequence, wg((π′′v)ω) = ∞ and, so, wg(π) = wg(π′v(π′′v)ω) > 0.
Summing up, σ⋆ is a ⊕-witness for the quasi dominion qsi(ϱ) as required by the
lemma statement.

Lemma 5. Let ϱ⋆≜ sol(ϱ) be the result of the solver operator applied to an
arbitrary ϱ ∈ R. Then, ϱ⋆ is a fixpoint of the progress operators, i.e., ϱ⋆ =
prg0(ϱ

⋆) = prg+(ϱ
⋆).
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Proof. By definition of inflationary fixpoint, ϱ⋆ is a fixpoint of the composition of
the two progress operators, i.e., ϱ⋆= prg+(prg0(ϱ

⋆)), which are inflationary func-
tions, due to Theorem 2. As a consequence, we have that ϱ⋆= prg+(prg0(ϱ

⋆)) ⊒
prg0(ϱ

⋆) ⊒ ϱ⋆. Thus, prg0(ϱ
⋆) = ϱ⋆ and, so, prg+(ϱ

⋆) = ϱ⋆.
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