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Abstract

The McNaughton-Zielonka divide et impera algorithm is the simplest and most
flexible approach available in the literature for determining the winner in a parity game.
Despite its theoretical exponential worst-case complexity and the negative reputation
as a poorly effective algorithm in practice, it has been shown to rank among the best
techniques for solving such games. Also, it proved to be resistant to a lower bound
attack, even more than the strategy improvements approaches, but finally Friedmann
provided a family of games on which the algorithm requires exponential time. An
easy analysis of this family shows that a simple memoization technique can help the
algorithm solve the family in polynomial time. The same result can also be achieved
by exploiting an approach based on the dominion-decomposition techniques proposed
in the literature. These observations raise the question whether a suitable combination
of dynamic programming and game-decomposition techniques can improve on the
exponential worst case of the original algorithm. In this paper we answer this question
negatively, by providing a robustly exponential worst case, showing that no possible
intertwining of the above mentioned techniques can help mitigating the exponential
nature of the divide et impera approaches. The resulting worst case is even more robust
than that, since it serves as a lower bound for progress measures based algorithms as
well, such as Small Progress Measure and its quasi-polynomial variant recently proposed
by Jurdziński and Lazic.
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1. Introduction

Parity games [2] are perfect-information two-player turn-based games of infinite
duration, usually played on finite directed graphs. Their vertices, labeled by natural
numbers called priorities, are assigned to one of two players, named Even and Odd
or, simply, 0 and 1, respectively. A play in the game is an infinite sequence of moves
between vertices and it is said to be winning for player 0 (resp., 1), if the maximal
priority encountered infinitely often along the play is even (resp., odd). These games
have been extensively studied in the attempt to find efficient solutions to the problem
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of determining the winner. From a complexity theoretic perspective, this decision
problem lies in NPTIME ∩ CONPTIME [3], since parity games are memoryless deter-
mined [2, 4, 5, 6]. It has been even proved to belong to UPTIME ∩ COUPTIME [7]
and, very recently, to be solvable in quasi-polynomial time [8]. They are the simplest
class of games in a wider family with similar complexities and containing, e.g., mean
payoff games [9, 10], discounted payoff games [11], and simple stochastic games [12].
In fact, polynomial time reductions exist from parity games to the latter ones. However,
despite being the most likely class among those games to admit a polynomial-time
solution, the answer to the question whether such a solution exists still remains elusive.
The effort devoted to provide efficient solutions stems primarily from the fact that
many problems in formal verification and synthesis can be reformulated in terms of
solving parity games. Emerson, Jutla, and Sistla [3] have shown that computing winning
strategies for these games is linear-time equivalent to solving the modal µCALCULUS
model checking problem [13]. Parity games also play a crucial role in automata the-
ory [14, 4, 15], where they can be applied to solve the complementation problem for
alternating automata [16] and the emptiness of the corresponding nondeterministic tree
automata [15]. These automata, in turn, can be used to solve the satisfiability and model
checking problems for expressive logics, such as the modal [17] and alternating [18, 19]
µCALCULUS, ATL? [19, 20], Strategy Logic [21, 22, 23, 24, 25], Substructure Tempo-
ral Logic [26, 27], and fixed-point extensions of guarded first-order logics [28].

Previous exponential solutions essentially divide into two families. The first one
collects procedures that attempt to directly build a winning strategy for one of the
two players on the entire game. To such family belongs the Small Progress Measure
approach by Jurdziński [29], which exploits the connection between the notions of
progress measures [30] and winning strategies. A second approach in same vein is
the Strategy Improvement algorithm by Jurdziński and Vöge [31], based on the idea of
iteratively improving an initial, non necessarily winning, strategy. This technique has
been then further refined in [32, 33].

The second family gathers, instead, the approaches based on decomposing the so-
lution of a game into the analysis of its subgames. To this family belong the so called
divide et impera approaches led by the Recursive algorithm proposed by Zielonka [34],
which adapts to parity games an earlier algorithm proposed by McNaughton for Muller
games [35]. Intuitively, it decomposes the input game into subgames and solves them
recursively. Using the Recursive algorithm as a back-end, and in the attempt to obtain
a better upper bound, the Dominion Decomposition [36, 37] and the Big Step [38, 39]
approaches were devised. Both share the idea of intertwining the recursive calls of the
back-end with a preprocessing phase, applied to the current subgame, in search of a
sufficiently small dominion for some player ℘, i.e., a set of positions from where ℘ wins
without ever exiting the set. The first technique does so by means of a brute force search,
while the second one exploits a suitable variation of the Small Progress Measure proce-
dure. A different direction has been followed recently within the decomposition-based
family, that leads to a novel solution technique based on the notions of quasi-dominions
and priority promotion [40, 41, 42]. The approach relies on a new procedure that finds
dominions of arbitrary size, which proved to be quite efficient in practice and exhibits
the best space complexity among the known solution algorithms, even better than the
recently introduced quasi-linear space algorithms [43, 44]. A related technique has been
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proposed in [45], where a refined notion of quasi-dominion, called tangle, is introduced.
The literature also suggests several heuristics to tune parity game solvers. One of the

most successful ones decomposes the game into strongly-connected components (SCCs,
for short) and solving it SCC-wise. SCC-decomposition, together with some other minor
techniques such as removal of self-cycles and priority compression, can significantly
improve the solution process, as discussed and empirically demonstrated in [46]. The
same authors also show that, against the negative reputation as far as performance is
concerned, the Recursive algorithm often stands out as the best solver among those
proposed in the literature, particularly when paired with the SCC-decomposition heuris-
tic. Despite having a quite straightforward exponential upper bound, this algorithm
has resisted an exponential lower bound for more than ten years, until Friedmann [47]
devised an indexed family of games that forces the algorithm to execute a number of
recursive calls that grows exponentially with the index. The family is also resilient
to the SCC-decomposition technique, since each subgame passed to a recursive call
always forms a single SCC. On a closer look, however, the games proposed there force
an exponential behavior by requiring the algorithm to repeatedly solve a small number
of subgames, actually only a linear number of them. As a consequence, all those games
are amenable to a polynomial-time solution, by simply providing the algorithm with a
suitable memoization mechanism that prevents it from wasting computational resources
on solving already solved subgames. For different reasons, also a dominion decomposi-
tion approach can break the lower bound easily, as most of the subgames of a game in
the family contain a dominion of constant size.

These observations raise the question whether the Recursive algorithm admits an
exponential lower bound robust enough to be resilient to a suitable memoization, SCC-
decomposition, and dominion decomposition techniques. The difficulty here is that
such a robust worst case should induce an exponential number of different subgames to
prevent memoization from being of any help. At the same time, each of those subgames
must contain a single SCC and only dominions of sufficiently large size to prevent
both SCC-decomposition and dominion decomposition techniques from simplifying the
game. In this paper, we answer positively the question, by providing a robust, and harder,
worst case family that meets all the above requirements, thereby shading some light on
the actual power of aforementioned techniques and sanctioning that no combination of
them can indeed help improving the exponential lower bound of the divide et impera
approaches.

A recent breakthrough [8] by Calude et al. proposes a succinct reduction from parity
to reachability games based on a clever encoding of the sequences of priorities a player
finds along a play. This allows for a mere quasi-polynomial blow up in the size of
the underlying graph and sets the basis of the fixed-parameter tractability w.r.t. the
number of priorities. The approach has been then considerably refined in [44], where
these encodings are modeled as progress measures. A different compact encoding for
progress measures, which leads to similar complexity results, as also been proposed
in [43]. Using a novel complexity measure for parity games, called the register-index,
the work in [48] also obtains a quasi-polynomial bound, by showing that parity games
with a fixed register-index can be solved in polynomial time and, in addition, their index
is always bounded by a logarithmic function of the number of positions. In [49] the
authors use the separation approach of [50] to prove that all the above quasi-polynomial
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techniques are optimal and cannot be further improved. An unrelated quasi-polynomial
upper bound has also been obtained in [51] for a refined version of the recursive al-
gorithm. The idea is based on the observation that, in any parity subgame, at most
one of the two players’ winning regions can be bigger than n/2, with n the number
of positions in the subgame. This is, then, exploited to bound the depth of the search
for winning regions of each generated subgame in such a way that the total number of
recursive calls is quasi-polynomial in the number of positions and of priorities. Despite
the theoretical relevance of this new ideas, preliminary experiments [52] suggest that, at
least at present, the practical impact of these results do not match the theoretical one,
as all exponential algorithms outperform, often by orders of magnitude, the current
implementations of the quasi-polynomial ones, which do not scale beyond few hundred
vertices. This evaluation is consistent with the fact that the new techniques essentially
amount to clever and succinct encodings embedded within a brute force search, which
makes matching quasi-polynomial worst cases quite easy to find. We prove, indeed, that
our worst case family generates difficult instances for the succinct version [43] of the
small progress measure algorithm as well.

The discussion above seems to suggest that the road to a polynomial solution
may need to take another direction. Our work is, therefore, intended to evaluate the
weaknesses of classic exponential algorithms, in the same vein as [53, 54], where the
authors study the pitfalls of existing exponential algorithms for graphs isomorphism,
in spite of the fact that a quasi-polynomial, but impractical, algorithm exists [55]. We
believe that a better understanding of the different issues of the known approaches may
lead to progress in the quest for a polynomial algorithm.

2. Parity Games

Let us first briefly recall the notation and basic definitions concerning parity games
that expert readers can simply skip. We refer to [56][34] for a comprehensive presenta-
tion of the subject.

A two-player turn-based arena is a tuple A =〈Ps,Ps,Mv〉, with Ps ∩ Ps = ∅
and Ps , Ps∪Ps, such that〈Ps,Mv〉 is a finite directed graph. Ps (resp., Ps) is the
set of positions of player 0 (resp., 1) and Mv ⊆ Ps×Ps is a left-total relation describing
all possible moves. A path in V ⊆ Ps is an infinite sequence π ∈ Pth(V) of positions in
V compatible with the move relation, i.e., (πi, πi+1) ∈ Mv , for all i ∈ N. A positional
strategy for player ℘ ∈ {0, 1} (we may, at times, use the symbol B to denote the set
{0, 1} for convenience) on V ⊆ Ps is a function σ℘ ∈ Str℘(V) ⊆ (V ∩ Ps℘) → V,
mapping each ℘-position v ∈ V ∩ Ps℘ to position σ℘(v) ∈ V compatible with
the move relation, i.e., (v, σ℘(v)) ∈ Mv . By Str℘(V) we denote the set of all ℘-
strategies on V. A play in V ⊆ Ps from a position v ∈ V w.r.t. a pair of strategies
(σ, σ) ∈ Str(V) × Str(V), called ((σ, σ), v)-play, is a path π ∈ Pth(V) such
that π = v and, for all i ∈ N, if πi ∈ Ps, then πi+1 = σ(πi) else πi+1 = σ(πi).

A parity game is a tuple a = 〈A,Pr, pr〉, where A is an arena, Pr ⊂ N is a finite
set of priorities, and pr : Ps → Pr is a priority function assigning a priority to each
position. The priority function can be naturally extended to games and paths as follows:
pr(a) , maxv∈Ps pr(v); for a path π ∈ Pth, we set pr(π) , lim supi→∞ pr(πi). A
set of positions V ⊆ Ps is a ℘-dominion, with ℘ ∈ {0, 1}, if there exists a ℘-strategy
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σ℘ ∈ Str℘(V) such that, for all ℘-strategies σ℘ ∈ Str℘(V) and positions v ∈ V, the
induced ((σ, σ), v)-play π has priority of parity ℘, i.e., pr(π) ≡2 ℘. In other words,
σ℘ only induces on V plays whose maximal priority visited infinitely often has parity ℘.
The winning region for player ℘ ∈ {0, 1} in game a, denoted by Wn℘a, is the maximal
set of positions that is also a ℘-dominion in a. Since parity games are determined
games [4], meaning that from each position one of the two players wins, the two win-
ning regions of a game a form a partition of its positions, i.e., Wna ∪Wna = Psa.
By a\V we denote the maximal subgame of a with set of positions Ps′ contained in
Ps\V and move relation Mv ′ equal to the restriction of Mv to Ps′. The ℘-predecessor
of V, in symbols pre℘(V) , {v ∈ Ps℘ : Mv(v) ∩V 6= ∅} ∪ {v ∈ Ps℘ : Mv(v) ⊆ V},
collects the positions from which player ℘ can force the game to reach some position in
V with a single move. The ℘-attractor atr℘(V) generalizes the notion of ℘-predecessor
pre℘(V) to an arbitrary number of moves. Thus, it corresponds to the least fix-point
of that operator. When V = pre℘(V), player ℘ cannot force any position outside V to
enter this set. For such a V, the set of positions of the subgame a\V is precisely Ps\V.
When confusion cannot arise, we may abuse the notation and write a to mean its set of
positions Psa.

3. The Worst-Case Core Family

As mentioned above, our goal is to define a new family of parity games that exhibits
worst-case behaviors for a number of parity games solvers and, at the same time, is robust
with respect to memoization and game decomposition techniques possibly employed by
the solvers. We start by focusing on satisfying the memoization robustness requirement,
the most difficult one to meet. We define below a simple family that forces the Recursive
algorithm to solve an exponential number of different subgames. As we shall see in the
following two sections, this family is already robust enough to provide a worst-case for
the Recursive algorithm, with or without memoization, and for progress-measure based
algorithms such as Small Progress Measure [29] and Succinct Progress Measure [43].

The core family {akC}ωk=1 of games is informally defined as follows. For each
k ∈ N+, game akC contains k + 1 gadgets, each one formed by three positions αi, βi,
and γi, for i ∈ [0, k]. The positions βi and γi, in gadget i, share the same priority
i and opposite owners, namely player i mod 2 for βi and (i + 1) mod 2 for γi. The
position αi in the gadget has the same owner as the corresponding βi. These positions
are leading ones, having higher priorities than all the β’s and γ’s of the other gadgets.
Positions within gadget i are connected as follows: αi can only move to βi; βi can only
move to γi; γi can choose either to move to βi or to stay in γi itself. Two adjacent
gadgets, of indexes i and i+ 1, are connected by only two moves: one from γi to αi+1

and one from βi+1 to αi. Figure 1 depicts game aC . The gray portion in the figure
represents the base game aC of the family, where the priorities of all its α-positions
have been increased by 2, so as to comply with the requirement that the α-positions
have the higher priorities. Indeed, in general, given an index k, game ak+

C is obtained
from akC by increasing by 2(k mod 2) units the priorities of each αi in the gadgets of
akC and adding a new gadget with index k + 1 connected as in figure. The games in the
core family are formally described by the following definition.
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Figure 1: Game a
C of the core family.

Definition 3.1 (Core Family). The core family {akC}ωk=1, where akC , 〈A,Pr, pr〉,
A , 〈Ps,Ps,Mv〉, and Pr , [0, 2k + 1 + k mod 2], is defined as follows. For any
index k ≥ 1, the set of positions Ps , {αi, βi, γi : 0 ≤ i ≤ k} of akC is divided into
three categories:

• αi belongs to player ℘ , i mod 2, i.e., αi ∈ Ps℘, and has priority pr(αi) ,
k + i+ 1 + k mod 2;

• βi belongs to player ℘ , i mod 2, i.e., βi ∈ Ps℘, and has priority pr(βi) , i;

• γi belongs to player ℘ , (i + 1) mod 2, i.e., γi ∈ Ps℘, and has priority
pr(γi) , i.

Moreover, the moves from positions αi, βi, and γi, with 0 ≤ i ≤ k, are prescribed as
follows:

• αi has a unique move to βi, i.e., Mv(αi) = {βi};

• βi has one move to γi and one to αi−1, if i > 0, i.e., Mv(βi) = {γi} ∪ {αi−1 :
i > 0};

• γi has one move to γi itself, one to βi, and, if i < k, one to αi+1, i.e., Mv(γi) =
{βi, γi} ∪ {αi+1 : i < k}.

It is not hard to verify that, for any k ∈ N+, the game akC is completely won by
player (k mod 2) and contains precisely 3(k + 1) positions and 6k + 4 moves. As we
shall see later in detail, the solution of each such games requires the Recursive algorithm
to solve an exponential number of different subgames.

These core games form the backbone for a more general framework, consisting of
an entire class of game families, with the property that each of them remains resilient
to memoization techniques. Essentially, each game in any such family extends a core
game. In order to define such a wider class, let us first establish what counts as a suitable

6



extension of a core. Clearly, for a game a to be an extension of akC , for some index
k ∈ N+, it must contain akC as a subgame. However, in order to prevent the recursive
algorithm from disrupting the structure of the core game contained in a while processing
the game, we have to enforce some additional requirements. In particular, we need the
algorithm to behave on a virtually in the same way as it does on the core subgame.
There is no unique way to ensure that. A simple solution is to require that all positions
αi still have the maximal priorities as in the core. Moreover, we require that no positions
αi and βi have additional moves in a w.r.t. those contained in the core. Finally, if γi can
escape to some position v outside the core, then v does not have a higher priority, it has
a move back to γi, and belongs to the opponent player w.r.t. γi. This condition ensures
that no γi can decide to escape the core without being bounced back immediately by the
opponent. The following definition makes the notion of extension precise.

Definition 3.2 (Core Extension). An arbitrary parity game a ∈ PG is a core extension
of akC , for a given index k ∈ N+, if the following four conditions hold:

1. a \ P = akC , where P , {v ∈ a : v 6∈ akC};

2. pra(v) < pra(α0), for all v ∈ P;

3. {αi, βi ∈ a : 0 ≤ i ≤ k} ∩ (Mv(P) ∪Mv−1(P)) = ∅;

4. v ∈ Ps℘, γi ∈ Mv(v), and pr(v) ≤ i, for all v ∈ P ∩Mv(γi), i ∈ [0, k], and
℘ , i mod 2.

We shall denote with PGC ⊆ PG the set of all core extensions of akC , for any index
k ∈ N+.

We can now define the abstract notion of worst-case family that extends the core
family, while still preserving the same essential properties that we are going to prove
shortly.

Definition 3.3 (Worst-Case Family). A family of parity games {ak}ωk=1 is a worst-case
family if ak is a core extension of akC , for every index k ∈ N+.

4. The Recursive Algorithm and the Core Family

The Recursive procedure, reported in Algorithm 1 and proposed by Zielonka [34]
in an equivalent version, solves a parity game a by decomposing it into two subgames,
each of which is, then, solved recursively. Intuitively, the procedure works as follows.
Algorithm 1, by means of Algorithm 2, starts by collecting all the positions that are
forced to pass through a position with maximal priority p , pr(a) in that game. This
first step results in computing the set A , atr℘a(pr−a (p)), i.e., the attractor to the set
pr−a (p) of positions with priority p w.r.t. player ℘ , p mod 2. The subgame aL is,
then, obtained from a by removing A from it and solved recursively. The result is a
partitioning of the positions of aL into two winning regions, WnL and WnL , one per
player.

In the following, for the sake of succinctness, given two arbitrary sets A and B
and a function f : A → 2B, we denote by A→a f(a) the set of functions {ι : A → B
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: ∀a ∈ A . ι(a) ∈ f(a)}, mapping each element in a ∈ A to an element ι(a) ∈ B
contained in the set f(a). Similarly, by A×af(a) we indicate the subset {(a, b) ∈ A×B
: b ∈ f(a)} of the Cartesian product A × B, where the elements a ∈ A are only
associated with the elements of B contained in f(a).

Algorithm 1: Recursive algorithm.

signature sol : PG→a2Psa×2Psa

function sol(a)
1 (aL, ℘)← fL(a)
2 (WnL ,WnL)← sol(aL)

3 if pre℘a(Wn℘L ) \Wn℘L = ∅ then
4 (Wn℘,Wn℘)←(Psa\Wn℘L ,Wn℘L )

else
5 aR ← fR(a,Wn℘L , ℘)
6 (WnR ,WnR)← sol(aR)

7 (Wn℘,Wn℘)←(Wn℘R ,Psa\Wn℘R )

8 return (Wn,Wn)

Algorithm 2: Left-subgame.

signature fL : PG → PG × B
function fL(a)

1 ℘← pr(a) mod 2

2 a? ← a \ atr℘a(pr−a (pr(a)))
3 return (a?, ℘)

Algorithm 3: Right-subgame.

signature fR : PG×a2Psa×B→PG
function fR(a,W, ℘)

1 a? ← a \ atr℘a(W)
2 return a?

At this point, the algorithm checks whether the subgame aL is completely won by ℘
or, more generally, if the adversary ℘ cannot force any other position in a into its own
winning region Wn℘L in one move. In other words, none of the winning positions of
the adversary ℘ can attract something outside that region, i.e., pre℘a(Wn℘L ) \Wn℘L = ∅.
If this is the case, the entire game a is solved. Indeed, the positions of a winning for
℘ are all its positions except, possibly, for those won by ℘ in subgame aL (see Line 4
of Algorithm 1). If, on the other hand, the above condition does not hold, the winning
region of ℘ can be extended with some other positions in a. Let B , atr℘a(Wn℘L ) be the
set collecting all such positions. Observe that all the positions in B are certainly winning
for ℘ in the entire game, as, from each such position, ℘ can force entering its own
winning region Wn℘L , from which its opponent ℘ cannot escape. The residual subgame
aR, obtained by removing B form a, as computed by Algorithm 3, may now contain
positions winning for either player, and, therefore, needs to be solved again recursively
(see Line 6 of Algorithm 1). All the positions of aR that turn out to be winning for ℘
in that game, namely Wn℘R , are, then, all and only those positions winning for ℘ in the
entire game a, while the remaining ones are winning for ℘ (see Line 7 of Algorithm 1).

As shown by Friedmann in [47], the algorithm admits a worst case family of games
{Fk}ωk=1 that requires a number of recursive calls exponential in k. The reason is
essentially the following. Each game Fk of that family contains all F j , with 1 ≤ j < k,
as subgames. Each recursive call that receives as input one such subgame F j requires
to eventually solve both F j− and F j−. As a consequence, the number of recursive
calls performed by the algorithm on game Fk can be put in correspondence with a
Fibonacci sequence. This proves that their number grows at least as fast as the sequence
of the Fibonacci numbers, namely that their number is Ω

(
((1 +

√
5)/2)k

)
. The very

reason that makes this family exponential also makes it amenable to a polynomial-time
solution. It suffices to endow the Recursive algorithm with a memoization mechanism
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â2
LL

β1

γ1

â2
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Figure 2: The induced subgame tree G of a.

that, for each solved game a, records the triple (a,Wna,Wna). Each recursive call
can, then, directly extract the winning regions of a subgame that is already contained
in the collection, thus preventing the procedure from solving any subgame more than
once. Not only does the resulting procedure make Friedmann worst case vain, but it
also speeds up the solution of games significantly, as long as the number of repeated
subgames remains relatively small, e.g., linear in the size of the original game, which is
often the case in practice.

We shall show that the same trick does not work for the worst-case family defined
in the previous section. In order to prove that any game in that family requires an
exponential number of different subgames to be solved, we shall characterize a suitable
subtree of the recursion tree generated by the algorithm, when called on one of the
games in the family. Starting from the root, which contains the original game ak, we
fix specific observation points in the recursion tree that are identified by sequences
in the set w ∈ {L, R}≤bk/2c, where L (resp., R) denotes the recursive call on the left
(resp., right) subgame. Each sequence w identifies two subgames of ak, namely âkw
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and akw, that correspond to the input subgames of two successive nested calls. In the
analysis of the recursion tree, we only take into account the left subgame akw of each
âkw, thus disregarding its right subtree as it is inessential to the argument. An example
of the resulting subgame tree for game C of the core family is depicted in Figure 2.
According to Algorithm 1 on input C = aε , the first (left) recursive call is executed
on the subgame obtained by removing the 1-attractor to the positions with maximal
priority, in this case α2, which only contains α2. Therefore, the left subgame coincides
precisely with âL . The second call is executed on the game obtained by removing the
0-attractor in aε to the winning region for player 0 of the left subgame âL . In this case,
that winning region is precisely {β2, γ2}, and its 0-attractor is {α2, γ1, β2, γ2}. As
consequence, the subgame fed to the right-hand call precisely coincides with âR . The
rest of the subtree is generated applying the same reasoning. The following definition
generalizes this notion to a game of any worst-case family and characterizes the portion
of the recursion tree we are interested in analyzing.

Definition 4.1 (Induced Subgame Tree). Given a worst-case family {ak}ωk=1, the
induced subgame tree Gk , {akw}w∈{L,R}≤bk/2c ∪ {âkw}

w 6=ε
w∈{L,R}≤bk/2c+1 w.r.t. an index

k ∈ N+ is defined inductively on the structure of the sequence w ∈ {L, R}≤bk/2c as
follows, where akε , ak and z , k − 2|w|:

1. âkwL , akw \ atr
℘k
akw

({αz});

2. âkwR , akw \ atr
℘k
akw

(Wn℘k
âkwL

);

3. akw , âkw \ atr
℘k

âkw
({αz+1}), if w 6= ε.

Before proceeding with the proof of the main result of this section, we need some ad-
ditional properties of the induced subgame tree of any worst-case family. The following
lemma, which is essential to the result, states some invariants of the elements contained
in the tree induced by a game ak that extends the core Ck. In particular, these invariants
ensure that all those elements are subgames of ak (Items 1 and 4) and that, depending
on the identifying sequence w, they contain the required leading positions αi of the
core (Items 2 and 7). In addition, it states two important properties of every left child in
the tree, i.e., those elements identified by a sequence w ending with L. Both of them
will be instrumental in proving that all the subgames in the tree are indeed different
and to assess their number, as we shall see in Lemmas 4.3 and 4.4. The first property
ensures that each such game necessarily contains a specific position γi, with index i
depending on w (Items 3 and 5). The second one (Item 6) characterizes the winning
region for player ℘k of the left-child subgames âkwL. It states that, in each such game,
the winning positions for player ℘k contained in the corresponding core Ck are all its
β-positions and γ-positions, with index that is of the same parity as ℘k and greater than
the maximal index x of the leading α-position. Indeed, as soon as the higher positions
αi, with i ∈ [x+ 1, k], are removed from the game, each residual corresponding γ℘k+2j ,
possibly together with its associated β℘k+2j , is necessarily contained in an independent
℘k-dominion.
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In the sequel, by lst(w) we denoted the last position of a non-empty sequence
w ∈ {L, R}+.

Lemma 4.1. For any index k∈N+ and sequence w∈{L, R}≤bk/2c+1, let z,k − 2|w|
and ℘ , k mod 2. Then, the following properties hold true:

• if |w| ≤ bk/2c, then

1. akw is a subgame of ak;

2. αj ∈ akw iff j ∈ [0, z];

3. γj ∈ akw, for all j ∈ [0, z], and γz+1 ∈ akw, if w 6= ε and lst(w) = L;

• if |w| > 0, then

4. âkw is a subgame of ak;

5. γj ∈ âkw, for all j ∈ [0, z], and, whenever lst(w) = L, γz+1 ∈ âkw, if
|w| ≤ bk/2c, and γ℘∈ âkw, otherwise;

6. Wn℘k
âkw
∩ Ck = {βz+2j , γz+2j ∈ âkw : j ∈ [1, |w|]}, if lst(w) = L;

• if 0 < |w| ≤ bk/2c, then

7. αj ∈ âkw iff j ∈ [0, z + 1].

Proof. The proof proceeds by induction on the structure of the sequence w.
For the base case w = ε, we have that akw = ak and z = k. Thus, Items 1, 2, and 3

hold due to Item 1 of Definition 3.2 and the structure of the game core Ck given in
Definition 3.1, while Items 4, 5, 6, and 7 are vacuously verified.

For the inductive case, assume that all properties hold for a given sequence w ∈
{L, R}≤bk/2c. We show that they hold for v = wx ∈ {wL, wR} as well. By Items 1
and 2 of Definition 4.1, we have that âkv = akw \A, where A = atr℘kakw

({αz}), if x = L,
and A = atr℘kakw

(Wn℘k
âkwL

), otherwise. We now proceed by analyzing all seven properties
separately.

[Item 4]. Since âkv is a subgame of akw, the property applied to v immediately
follows from Item 1 applied to w.

[Item 7]. Item 1 of this lemma, together with Items 1 and 3 of Definition 3.2 and
the topology of the game Ck, implies that A = {αz, βz+1}, if x = L, and A ∩ Ck =
{αz} ∪ {γz−1 : |w| < bk/2c} ∪ {βz+1 : γz+1 6∈ akw} ∪ {βz+2j , γz+2j ∈ akw :
j ∈ [0, |w|]}, otherwise. Indeed, if x = L, the position βz+1 is the only one that gets
attracted by αz w.r.t. player ℘k, as the other two positions γz−1 and γz+1, having a
non-forced move to either αz or βz+1, belong to player ℘k. If, on the other hand, x = R,
due to Item 6 of this lemma for wL, we have that Wn℘k

âkwL

∩Ck = {βz+2j , γz+2j ∈ âkwL :

j ∈ [0, |w|]}. Therefore, the only positions of akw ∩ Ck attracted by Wn℘k
âkwL

w.r.t. player
℘k are αz and, possibly, γz−1 or βz+1. Indeed, αz has a forced move to βz . Moreover,
if |w| < k, then γz−1 is willing to follow αz , since it belongs to player ℘k. Finally, if
γz+1 does not belong to the game, βz+1 is forced to reach αz as well. At this point, the
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item for v is immediately derived from Item 2 for w, by observing that in both cases αz
is the only α-position that is removed and k − 2|v|+ 1 = k − 2|w| − 1 < z.

[Item 5]. By applying a proof similar to the one of Item 7], the property of interest
applied to v is derived from Item 3 applied to w. Indeed, consider firstly the case
|v| ≤ bk/2c. If x = lst(v) = L, as observed above, A = {αz, βz+1}, thus no γ-
position is removed from akw to obtain âkv . If x = R, instead, the only γ-positions
possibly removed have index at least equal to z − 1 > k − 2|v| = z − 2. Thus, the
statement immediately follows. Consider now the case |v| = bk/2c+ 1. Obviously, we
have that zv = k − 2|v| ∈ [−2,−1] and, so, zw = k − 2|w| ∈ [0, 1]. More specifically,
zw = 0, if k ≡2 0, and zw = 1, otherwise. By Item 3, it follows that γj ∈ akw, for all
j ∈ [0, zw]. Thus, γ℘∈ âkw.

We can now focus on the games akv that, by Definition 4.1, are equal to âkv \A with
A = atr℘k

âkv
({αz−1}).

[Item 1]. The property applied to v simply derives from Item 4 applied to v.
[Item 2]. Again by Items 1 and 3 of Definition 3.2 and the topology of the game

Ck, we have that A = {αk−2|v|+1, βk−2|v|} = {αz−1, βz}, if x = L, and A =
{αk−2|v|+1} = {αz−1}, otherwise. Consequently, the item for v follows from Item 7
for v, since αz−1 is the unique α-position that is removed from the game.

[Item 3]. The property applied to v is implied by Item 5 applied to v, as no
γ-positions is removed.

[Item 6]. To conclude the proof of the entire theorem, consider the case where
v = wL. First observe that, due to Items 1 and 4 of Definition 3.2, the set of positions
D = {βz+2j , γz+2j ∈ âkv : j ∈ [0, |w|]} ∪

⋃j∈[0,|w|]
γz+2j∈âkv

Mv(γz+2j) ∩ âkv is a ℘k-

dominion in the game âkv , constituted by the possibly overlapping union of the ℘k-
dominions D℘k

j = {βz+2j , γz+2j ∈ âkv}∪Mv(γz+2j)∩ âkv , for every index j ∈ [0, |w|]
such that γz+2j ∈ âkv . Indeed, the priority of the positions in {βz+2j , γz+2j ∈ âkv} is of
the same parity as player ℘k, being equal to z + 2j, and the priorities of the positions in
Mv(γz+2j) ∩ âkv are not greater than z + 2j. Moreover, there is no move the opponent
℘k can take from its unique position γz+2j in order to escape from the set, as there is no
position αz+2j+1 ∈ âkv . Hence, D℘k

j is, by definition, a ℘k-dominion.

α0/5 α1/6

β0/0 β1/1 β2/2

γ0/0 γ1/1 γ2/2 γ3/3 γ4/4

Figure 3: Game â
LL.

For example, looking at the game aLL depicted in Figure 3, it is immediate to see
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that β2, γ2, and γ4 belong to the winning region of player 0. Observe that D ∩ Ck =
{βk−2|v|+2j , γk−2|v|+2j ∈ âkv : j ∈ [1, |v|]}, being k − 2|v| = z − 2. Therefore, to
prove the thesis, it suffices to show that all the other positions in Ck \ D belong to
the ℘k-dominion in the game âkv obtained by the possibly overlapping union of the
following ℘k-dominions:

• D℘k
j = {βz+2j+1, γz+2j+1 ∈ âkv} ∪Mv(γz+2j+1) ∩ âkv , for every index j ∈

[0, |w|[ such that γz+2j+1 ∈ âkv ;

• H = {αj , βj , γj : j ∈ [0, z[} ∪
⋃j 6≡2z
j∈[0,z[ Mv(γj)∩ âkv , where

⋃j 6≡2z
j∈[0,z[ Mv(γj)∩

âkv takes care of including those position of the core extension that are not in the
core but are attracted by the γ-positions in {αj , βj , γj : j ∈ [0, z[}.

For instance, in the game of Figure 3, where v = LL and ℘k = ℘4 = 1, such a 1-
dominion is the union of D

 = {γ3} and H = {αj , βj , γj : j ∈ {0, 1}}. The proof that
D℘k
j is a ℘k-dominion is, mutatis mutandis, the same as the one used to show that D℘k

j

is a ℘k-dominion. Therefore, we only focus on the component H. Observe that, since
αz 6∈ âkv , the two positions βz−1, γz−1 ∈ H, together with those in Mv(γz−1) ∩ âkv ,
form a ℘k-dominion X. Again, the proof here is the same as that used for the ℘k-
dominions D℘k

j . Consequently, the ℘k-attractor A = atr℘k
âkv

(X) is still a ℘k-dominion.

Now, by structural induction, we can also see that the remaining positions in H \ A

correspond to another ℘k-dominion. Therefore, in âkv player ℘k has only the possibility
to either remain in H \A or to pass in A and then remain there forever. Hence, H is a
℘k-dominion as required.

Finally, the next lemma simply establishes that all the subgames contained in the
induced subgame tree of Definition 4.1 are indeed generated by the Recursive algorithm
when called with input game ak of some worst-case family.

Lemma 4.2. For any index k ∈ N+ and sequence w ∈ {L, R}≤bk/2c, the following
properties hold:

1. fL(akw) = (âkwL, ℘k);

2. fR(akw,Wn℘k
âkwL

, ℘k) = âkwR;

3. fL(âkw) = (akw, ℘k), if w 6= ε.

Proof. The proof of each item easily follows from the definition of the algorithm and
the properties of the game they are applied to.

[Item 1]. Due to Items 1 and 2 of Lemma 4.1 and Items 1 and 2 of Definition 3.2,
the maximal priority pr(akw) of the game akw is 2(k − |w|) + 1 + ℘k ≡2 ℘k, which is
assumed by the position αk−2|w|. Consequently, we have pr−(pr(akw)) = {αk−2|w|}.
Thus, the thesis follows due to Item 1 of Definition 4.1 and the instructions constituting
Algorithm 2.

[Item 2]. The thesis is an immediate consequence of the structure of Algorithm 3
and Item 2 of Definition 4.1.
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[Item 3]. Due to Items 4 and 7 of Lemma 4.1 and Items 1 and 2 of Definition 3.2, the
maximal priority pr(âkw) of the game âkw is 2(k−|w|)+2+℘k ≡2 ℘k, which is assumed
by the position αk−2|w|+1. Consequently, we have pr−(pr(âkw)) = {αk−2|w|+1}.
Thus, the thesis follows due to Item 3 of Definition 4.1 and the instructions constituting
Algorithm 2.

We are now ready for the main result of this section, namely that the induced
subgame tree contains elements which are all different from each other and whose
number is exponential in the index k. We split the result into two lemmas. The first
one simply states that any subgame in the left subtree of some akw is different from
any subgame in the right subtree. The idea is that for for any subgame in the tree, all
subgames of its left subtree contain at least one position, a specific position γi, with i
depending on w, that is not contained in any subgame of its right subtree.

Lemma 4.3. For all indexes k ∈ N+ and sequences w, v ∈ {L, R}∗, with ` , |w| +
|v| ≤ bk/2c, z , k − 2|w| − 1, and ℘ , k mod 2, the following properties hold:

1. if |w|=bk/2c then γ℘∈ âkwL else (a) γz ∈ âkwLv and (b) γz ∈ akwLv , if ` < bk/2c.

2. if |w|=bk/2c then γ℘ 6∈ âkwR else (a) γz 6∈ âkwRv and (b) γz 6∈ akwRv , if ` < bk/2c.

Proof. First observe that, if |w| 6= bk/2c, then γz belongs to both akw, if ` < bk/2c,
and âkw, due to Items 3 and 5 of Lemma 4.1 applied to w, since 0 < z < k − 2|w|.

[Item 1]. If |w| = bk/2c, by Item 5 of Lemma 4.1 applied to wL, it holds that
γ℘ ∈ âkwL. In what follows, let us assume that |w| < bk/2c.

We now show that the every position γz belongs to all the descendants of akw in
its left subtree. The proof proceeds by induction on the length of the sequence v and
recall that, due to Item 2 (resp., 7) of Lemma 4.1, the position with maximal priority
in akw (resp., in âkw) is αz (resp., αz+1). Assume, for the base case, that |v| = 0. The
thesis becomes γz ∈ akwL and γz ∈ âkwL. By Item 1 of Definition 4.1, âkwL is defined as
akw \ A, where A = atr℘kakw

({αz+1}). By Definition 3.2 of core extension (Items 1, 3,
and 4), a move entering αz+1 may only come from βz+2, if it is present in the subgame,
which is always the case unless w = ε, or from γz , whose owner is player ℘k and
cannot be attracted. Hence, A = {αz+1, βz+2}, if w 6= ε, and A = {αz+1}, otherwise.
Similarly, by Item 3, akwL is defined as âkwL \ A, where A = atr℘k

âkwL

({αz}). From the

same observations as in the previous case, we have that A = {αz, βz+1}. Hence, no
position γi is removed from either game and the thesis immediately follows for the base
case.

For the inductive case, assume |v| > 0, let v′ such that v = v′ · x, with x ∈ {L, R},
and u , wLv′. By the inductive hypothesis, γz ∈ âku and γz ∈ aku. We have two cases,
depending on whether x = L or x = R. Let r , k − 2|u|.

If x = L, according to Item 1 of Definition 4.1, âkuL is obtained from aku by removing
A = atr℘kaku

({αr}) = {αr, βr+1}. Similarly, by Item 3 of Definition 4.1, akuL is defined

as âkuL \A, where A = atr℘k
âkuL

({αr−1}), by observing that |uL| = |v|+1 and, therefore,

k − 2|uL|+ 1 = r − 1. In both cases the thesis follows immediately for the inductive
case with x = L.
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Let us now consider the case with x = R. According to Item 2 of Definition 4.1,
âkuR is obtained by removing the set A = atr℘kaku

(Wn℘k
âkuL

) from aku. Position γz has

index z congruent to ℘k modulo 2 and cannot belong to Wn℘k
âkuL

, which, by Item 6
of Lemma 4.1, only contains, among the positions from the core, those βi and γi,
with i ≥ k − 2|w| > z and congruent to ℘k modulo 2. Since, âkuL is a subgame of
a core extension, it holds that γz is owned by player ℘k and can only have a move
leading to αz+1, which is not in the subgame, or to a position outside the core and
owned by player ℘k. As a consequence, it cannot end up in atr℘kaku

(Wn℘k
âkuL

). Finally,

recall that akvR = âkvR \ A, where A = atr℘k
âkvR

({αr̂}), with r̂ , k − 2|vR| + 1. In
the considered subgame, αr̂ has incoming moves only from βr̂+1 and γr̂−1. However,
r̂ − 1 = k − 2|vR| < k − 2|w| − 1 = z. Moreover, index r̂ + 1 is congruent to ℘k
modulo 2, and thus βr̂+1 is not contained in âkvR, being in Wn℘k

âkvL
as shown above. As

a consequence, A = {αr̂} and the thesis follows for the inductive case with x = R as
well.

[Item 2]. Observe that, if |w| < bk/2c, then γz 6∈ âkwR. Indeed, position γz ∈
atr℘kakw

(Wn℘k
âkwL

), as shown in Item 1 above. Since this set is removed from akw to obtain

âkwR, the thesis holds for âkwR. Moreover, every descendant âkwRv of âkwR in the subgame
tree is obtained only by removing positions. As a consequence, none of them can
contain position γz . In case |w| = bk/2c, instead, it suffices to observe that, as noted
above, according to Item 5 of Lemma 4.1, γ℘ ∈ âkwL, thus, by Item 6 of the same lemma
γ℘ ∈Wn℘k

âkwL

too. Hence, γ℘ cannot be contained in âkwR.

The result asserting the exponential size of the induced subtrees of any worst-case
family is given by the next lemma. This follows by observing that the number of nodes
in the induced tree is exponential in k and by showing that the subgames associated
with any two nodes in the tree Gk are indeed different.

Lemma 4.4.
∣∣Gk∣∣ = 3(2bk/2c+1 − 1), for any k ∈ N+.

Proof. To prove that the size of Gk is as stated, we first need to show that all the
elements contained in the subgame trees are different, namely that, for each w 6= w′,
the subgames akw, akw′ , âkw, and âkw′ are pairwise different. Let us start by showing that
akw 6= âkw, for each w 6= ε. By Item 7 of Lemma 4.1, position αk−2|w|+1 ∈ âkw and, by
Item 3 of Definition 4.1, this position is removed from âkw to obtain akw. Hence, those
two subgames cannot be equal. Let us consider now two subgames, each associated
with one of the sequences w and w′. There are two possible cases: either (i) w is a
strict prefix of w′, i.e., one subgame is a descendant of the other in the subgame tree,
or (ii) w and w′ share a common longest prefix v that is different from both, i.e., the
two subgames lie in two distinct subtrees of the subgame associated with v. In case
(i) we have that w′ = wv, for some v 6= ε. An easy induction on the length of v can
prove that if a ∈ {akw, âkw} and a′ ∈ {akw′ , âkw′} are the subgames associated with w
and w′, respectively, then the second is a strict subgame of the first, i.e., a′ ⊂ a. Indeed,
Definition 4.1 together with Items 2, 7, and 6 of Lemma 4.1 ensure that, at each step
downward along a path in the tree starting from a, whether we proceed on the left or
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the right branch, at least one position is always removed from the current subgame. In
case (ii), instead, Item 1 of Lemma 4.3 tells us that there is at least one position, γz in
the lemma, contained in all the subgames of the left subtree, while Item 2 states that the
same position is not contained in any subgame of the right subtree. Therefore, each of
the two subgames associated with w must be different from either of the two subgames
associated with w′.

Finally, to prove the statement of the lemma, it suffices to observe that the number of
sequences of length at most bk/2c over the alphabet {L, R} are precisely 2bk/2c+1 − 1
and with each such sequence w a subgame akw is associated. As a consequence, the set
{akw}w∈{L,R}≤k contains 2bk/2c+1−1 different elements. Moreover, each such subgame
has two children in {âkw}

w 6=ε
w∈{L,R}≤k+1 . We can, then, conclude that the size of Gk is

precisely 3(2bk/2c+1 − 1).

As a consequence of Lemma 4.4, we can obtain a stronger lower bound for the
execution time of the Recursive algorithm. Indeed, the result holds regardless of whether
the algorithm is coupled with a memoization technique.

Theorem 4.1 (Exponential Worst Case). The number of distinct recursive calls executed
by the Recursive algorithm, with or without memoization, on a game with n positions is
Ω
(
2
n
6

)
in the worst case.

Proof. To prove the theorem, it suffices to consider a game Ck belonging to the core
family. Indeed, Lemma 4.2 states that the induced subgame tree of Ck is a subset of the
recursion tree induced by the Recursive algorithm executed on that game. Therefore,
according to Lemma 4.4, the algorithm performs at least 3(2bk/2c+1 − 1) calls, each
on a different subgame. By Definition 3.1, game Ck has n = 3(k + 1) positions and,
therefore, we have bk/2c =

⌊
n−3

6

⌋
. As a consequence, the number of recursive calls is

bounded from below by 3(2b
n+3
6 c − 1) = Ω

(
2
n
6

)
.

5. Progress Measure-based Algorithms and the Core Family

Progress measures are decorations of a graph, whose local consistency usually
guarantees, from an high-level point of view, some global property of the graph it-
self [30]. Fixed a player ℘ ∈ {0, 1}, the original progress measure algorithm [29] and
its quasi-polynomial time variation [43] exploit this idea, by decorating every position
v ∈ Ps of a game a with an element ι(v) ∈ M℘, called measure, from an ordered
set (M℘,v). These decorations ι, called ℘-measure functions, naturally inherit the
order v from M℘. Measures are used to compare, via a suitable truncated ordering
vpr(v), the relevance of the priority pr(v) of position v ∈ Ps w.r.t. those associated
with its successors v′ ∈ Mv(v). These comparisons characterize, in this context, the
local consistency property among positions mentioned above. It can be proved that
a minimal measure function ιω satisfying such a property always exists and uniquely
identifies those positions in Ps belonging to the winning region Wn℘ of player ℘ [29].
The two algorithms share the same structure as the ordered measure set (M℘,v). In
more detail, given D , {d ∈ Pr : d ≡2 ℘} the set of priorities congruent to the parity
of player ℘ and (N,�) an ordered set, the support is M℘ ⊆ {>} ∪ D → N, where,
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v is the lexicographic ordering w.r.t. � on M℘ \ {>} that also satisfies m v >, for
every m ∈ M℘, and > ∈ M℘. The priority-sensitive comparison vp, with p ∈ Pr,
is derived from v and a truncation operation defined as follows: m↓p, m�{d ∈ D :

d ≥ p}, if m 6= >, and m↓p , >, otherwise, for all m ∈ M℘. The truncated ordering
vp can, then, be obtained as m vp m if m ↓p v m ↓p, for all m,m ∈ M℘.
Given a ℘-measure function ι : Ps → M℘, i.e., a function that assigns a measure in
M℘ to each position of the game, the notion of successor measure of ι w.r.t. a move
(v, v) ∈ Mv and an ordering relation C∈ {<,v} can be defined as the element
sucC(ι)((v, v)) , minvpr(v)

{m ∈ M℘ : ι(v) C m}. Notice that, if ι(v) = >,
then sucC(ι)((v, v)) = >, since {m ∈ M℘ : ι(v) C m} = ∅ in this case. Thanks to
the Knaster-Tarski theorem, the minimal measure function ιω satisfying the local consis-
tency property can be obtained as the least fixed point ιω = µX.lift℘(X) of the mono-
tone lifting operator lift℘ : (Ps → M℘) → (Ps → M℘) defined via the two auxiliary
functions liftC : (Ps → M℘) → (Mv → M℘) and lift℘ : (Ps → M℘) → (Mv → M℘)
according to the following:

Definition 5.1.

1. liftC(ι)((v, v)) , maxvpr(v)
{ι(v), sucC(ι)((v, v))};

2. lift℘(ι)((v, v)) ,

{
lift<pr(v)

(ι)((v, v)), if pr(v) ≡2 ℘;

liftvpr(v)
(ι)((v, v)), otherwise;

3. lift℘(ι)(v) ,

{
maxvpr(v)

{lift℘(ι)((v, v′)) : (v, v′) ∈ Mv}, if v ∈ Ps℘;

minvpr(v)
{lift℘(ι)((v, v′)) : (v, v′) ∈ Mv}, otherwise.

In their works, the authors of [29] and [43] proved that the set of winning positions
Wn℘ of player ℘ in a parity game coincides with the set {v ∈ Ps : ιω(v) = >} of
positions with measure > in the fixpoint measure function, while the remaining ones
Wn℘ = Ps \Wn℘ are winning for player ℘.

Thanks to the monotonicity of the successor function, and independently of the
definition of the ordered set (N,�), we can prove that, in a game belonging to any
extension of the Core family, the lift of a ℘-measure function ι always increments by
the least possible quantity the measure associated with position γ℘, as stated by the
following lemma.

Lemma 5.1. Let ak be an element in a worst case family {ak}ωk≥1 and ℘ ∈ {0, 1}
a player. Then, lift℘(ι)(γ℘) ∈ {ι(γ℘), suc<(ι)((γ℘, γ℘))}, for any measure function
ι ∈ M℘.

Proof. By Definition 3.1, the position γ℘ has priority pr(γ℘) = ℘, but player ℘. There-
fore, due to Definition 5.1, we have that lift℘(ι)(γ℘) = minvpr(γ℘)

{lift℘(ι)((γ℘, v)) :

(γ℘, v) ∈ Mv}. Now, if there is successor v of γ℘ with ι(v) <℘ ι(γ℘), it holds that
lift<℘(ι)((γ℘, v)) = maxvpr(γ℘)

{ι(γ℘), suc<℘(ι)((γ℘, v))} = ι(γ℘), since ι(v) <℘

ι(γ℘) implies suc<℘(ι)((γ℘, v)) vpr(γ℘) ι(γ℘). Otherwise, ι(γ℘) vpr(γ℘) ι(v), for ev-
ery possible successor v. Hence, lift<℘(ι)((γ℘, v)) = maxvpr(γ℘)

{ι(γ℘), suc<℘(ι)((γ℘, v))} =
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suc<℘(ι)((γ℘, γ℘)). Observe that, in the last equality we are exploiting the monotonic-
ity of the successor function, i.e., suc<℘(ι)((γ℘, v)) vpr(γ℘) suc<℘(ι)((γ℘, v)), if
ι(v) vpr(γ℘) ι(v). At this point, since ℘ ∈ {0, 1}, it holds that γ℘ has the minimal
priority of parity ℘ in the game, thus, <pr(γ℘)=<. As a consequence, we have that
lift<℘(ι)((γ℘, v)) = suc<(ι)((γ℘, γ℘)).

As mentioned above, the Small Progress Measure algorithm and its succinct version
only differ in the definitions of the underlying ordered set (N,�) and of the measure
set M℘. For Small Progress Measure, we have that (N,�) , (N,≤) and, for all
m ∈ M℘ \ {>} and d ∈ D, it holds that m(d) ≤ nd, where nd denotes the number of
positions with priority d in the game. For the Succinct Progress Measure algorithm,
instead, we have that N , {0, 1}∗, � is the lexicographic ordering on bit sequences
w.r.t. the ordering 0 < ε < 1, and, for all m ∈ M℘ \ {>} , it holds that

∑
d∈D |m(d)| ≤

dlog2 ne, where n is the total number of positions in the game.
We can prove that any worst case family {ak}ωk≥1 contains difficult instances for the

both these algorithms as well. In both cases, this is proved by exploiting Lemma 5.1 and
by showing that position γ℘ is lifted an exponential (resp., a quasi-polynomial) number
of times before a fixpoint is reached.

Lemma 5.2 (Small Progress Measure Exponential Worst Case). The number of lifts
executed by the Small Progress Measure algorithm for player ℘ ∈ {0, 1} on the (2k+℘)-
th element of a worst case family is Ω

(
6k
)
.

Proof. Given a worst-case family {ak}ωk≥1, let us fix a player ℘ and the subfamily
{ak+℘}ωk≥1. Moreover, observe that, each game in the subfamily is completely won
by player ℘. The Small Progress Measure algorithm on a game ar with r = 2k + ℘

for player ℘ computes the least fixpoint ιω = µι.lift℘(ι) of lift℘, which assigns each
position v of the game to >, i.e., ιω(v) = >. To do this, the algorithm iteratively
applies the lift operator, i.e., ιi+1 = lift℘(ιi), starting from the initial measure func-
tion ι0, which assigns the smallest measure in M℘. By Lemma 5.1, we know that
lift℘(ι)(γ℘) ∈ {ι(γ℘), suc<(ι)((γ℘, γ℘))}, for every ι. In addition, the priority of γ℘
is either 0 or 1, depending on ℘. As a consequence, vpr(γ℘)=v, in other words, no
truncation occurs. Therefore, the sequence ι0, ι1, . . . , ιh = ιω of lifts performed by
the algorithm induces a non-decreasing chain m = ι0(γ℘),m = ι1(γ℘), . . . ,mh =
ιh(γ℘) of measures for γ℘, which contains a maximal strictly increasing subchain
mj ,mj , . . . ,mjz , where (i) mj = m, (ii) mjl+ is the minimal measure greater
than mjl , i.e., mjl+ = minv{m ∈ M℘ : mjl < m}, for l ∈ [0, z], and (iii) mjz = >.
Therefore, z is equal to the height of the total ordered set M℘, which corresponds to its
cardinality. For the game ar, a measure m ∈ M℘ \ {>} is isomorphic to a (r+ 1)-tuple
〈bk+℘−1, . . . , b0, tk, . . . , t0〉 of numbers, with bi ∈ {0, 1} and ti ∈ T ⊇ {0, 1, 2}, for
some set T ⊆ N [29]. Indeed, there is a single position for each one of the k + ℘

priorities of parity ℘ in the range [r + ℘+ 1, 2r + ℘+ 1], while there are at least two
positions for the k + 1 priorities of the same parity in [0, r]. The cardinality of M℘ is,
therefore, at least 2(k+℘)3(k+1) ≥ 6k.

Theorem 5.1 (Small Progress Measure Exponential Worst Case). The number of lifts
executed by the Small Progress Measure algorithm on a game with n positions is Ω

(
6
n
6

)
in the worst case.

18



Proof. Consider the core family {akC}ωk≥1 and its ak+℘
C element containing n =

3(2k+℘+ 1) positions. By Lemma 5.2, we have that Small Progress Measure performs
Ω
(
6k
)

lifts, where k = n−3℘−3
6 . Consequently, the number of lifts is Ω

(
6
n
6

)
.

Lemma 5.3 (Succinct Progress Measure Quasi-Polynomial Worst Case). The number
of lifts executed by the Succinct Progress Measure algorithm for player ℘ ∈ {0, 1} on
the (2k + ℘)-th element of a worst case family is Ω

(
(6k)log k−log dlog 6ke).

Proof. Due to the previously described framework, it is clear that the Succinct Progress
Measure algorithm is structurally identical to the Small Progress Measure one, being
the measure set the only difference between the two approaches. As a consequence,
the number of lifts required by the former algorithm on an element ar with index
r = 2k + ℘ of a worst-case family {ak}ωk≥1 is equal to the dimension of its measure
set M℘ as well. Now, every measure m ∈ M℘ \ {>} is isomorphic to a (r + 1)-
tuple 〈s0, . . . , sr〉 of binary strings [43], with si ∈ {0, 1}∗ and

∑r
i=0 |si| = dlog ne,

where n ≥ n? , 3(r + 1) is the number of positions in ar. For any h ∈ [0, dlog ne],
there are 2h binary strings s ∈ {0, 1}h of length h and, for each one of them, exactly(
h+r
h

)
ways to be spit into (r + 1) substrings s0, . . . , sr. Consequently, the size of the

measure set M℘ is
∑dlogne
h=0 2h

(
h+r
h

)
≥ n?

(dlogn?e+r
dlogn?e

)
≥ n?

(
dlogn?e+r
dlogn?e

)dlogn?e
≥

n?
(

r
dlogn?e

)dlogn?e
≥ n?

(
r

dlogn?e

)logn?

. Since r ≥ n?

6 , for any k ∈ N+, we have

|M℘| ≥ n?
(

n?

6dlog n?e

)logn?

= n?
(

n?

n? logn? (6dlogn?e)

)logn?

= n?(logn?)(1−logn? (6dlogn?e))+1 = n? logn?−log(6dlogn?e))+1

= n? logn?−log dlogn?e−log 6+1.

Finally, since n? > 6k, we have that

|M℘| ≥ (6k)log 6k−log dlog 6ke−log 6+1 = (6k)log k−log dlog 6ke+1

= Ω
(

(6k)log k−log dlog 6ke
)
.

Theorem 5.2 (Succinct Progress Measure Quasi-Polynomial Worst Case). The number
of lifts executed by the Succinct Progress Measure algorithm, on a game with n positions
is Ω

(
(n− 6)log n

6−log dlogne) in the worst case.

Proof. Consider the core family {akC}ωk≥1 and its ak+℘
C element containing n =

3(2k + ℘ + 1) positions. By Lemma 5.3, we have that Succinct Progress Measure
performs Ω

(
(6k)log k−log dlog 6ke) lifts, where k = n−3℘−3

6 . Consequently, the number
of lifts is Ω

(
(n− 6)log n

6−log dlogne).
The quasi-polynomial time algorithm proposed in [44] is yet another instance of

a progress measure based approach and can easily be recast in the above framework,
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by a suitable definition of the measure set M℘, the truncation operation m ↓p, and
the successor function sucC. Unlike the two algorithm discussed above, however, the
resulting successor function does not enjoy the monotonicity property, as pointed out
in [44]. As a consequence, Lemma 5.1 does not hold for this approach. Nonetheless,
we conjecture that the number of lifts for position γ℘ is still quasi-polynomial in the
index of the game and a result analogous to Theorem 5.2 holds in this case as well.

6. SCC-Decomposition Resilient Games

The previous sections provide a class of parametric families of parity games over
which a dynamic-programming approach cannot help improving the asymptotic expo-
nential behavior of the classic Recursive algorithm and that serves an exponential, for
SMP, or a quasi-polynomial, for Succinct SMP, lower bound for the progress measures
based algorithms. The core family, however, is not robust enough to resist to game
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Figure 4: Game a
S of the SCC family.

decomposition techniques such as, SCC-decomposition. In particular, it is not hard
to observe that for the Recursive algorithm a SCC-decomposition of the underlying
game graph, if applied by each recursive call as described in [46], would disrupt the
recursive structure of the core family {akC}ωk=1 and, consequently, break the exponential
worst-case. This is due to the fact that the subgames akw in the induced subgame tree
get decomposed into distinct SCCs, which can then be solved as independent subgames
and memoized. In other words, the Recursive algorithm extended with memoization
and SCC-decomposition can easily solve the core family. A concrete instance of this
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behavior can be observed by looking at the two games âLL and âRL of Figure 2. The first
one is formed by three distinct components, one of which exactly corresponds to âRL.
Therefore, a solution of these components immediately implies that the leaves in the
induced subgame tree could not be considered distinct games w.r.t. to the behavior of the
combined algorithm anymore. This behavior can, however, be prevented by introducing
a suitable extension of the core family, which complies with the requirements of Defini-
tion 3.2. The basic idea is to connect all the pairs of positions γi and γj together in a
clique-like fashion, by means of additional positions, denoted δ℘{i,j} with ℘ ∈ {0, 1},
whose owners ℘ are chosen so as to preserve the exponential behavior on the underlying
core family. With more detail, if i ≡2 j, there is a unique connecting position δ℘{i,j}
of parity ℘ ≡2 i, the opposite of that of γi and γj . If, on the other hand, i 6≡2 j, two
mutually connected positions, {δ0

{i,j}, δ
1
{i,j}}, separate γi and γj . Figure 4 depicts the

extension aS of the core game aC . The grey-filled positions in the figure enforce mutual
connection among the nodes of the core in any subgame of the subgame tree, while the
remaining positions are exactly those of the Core family and connected among them in
the same way. The complete formalization of the new family follows.

Definition 6.1 (SCC Family). The SCC family {akS}ωk=1, where akS , 〈A,Pr, pr〉,
A ,〈Ps,Ps,Mv〉, Pr , [0, 2k + 1 + ℘], and Ps , akC ∪P, is defined, for any index
k ≥ 1, as follows:

1. P , {δ℘{i,j} : ℘ ∈ {0, 1} ∧ i, j ∈ [0, k] ∧ i 6= j ∧ (i ≡2 j → ℘ ≡2 i)};

2. (γi, δ
℘
I ), (δ℘I , γi) ∈ Mv iff i ∈ I and i ≡2 ℘, for i ∈ [0, k] and δ℘I ∈ P;

3. (δ℘I , δ
℘
I ) ∈ Mv iff i 6≡2 j, for δ℘I ∈ P and I = {i, j};

4. δ℘I ∈ Ps℘ and pr(δ℘I ) , 0, for δ℘I ∈ P;

5. akS \ P = akC .

Intuitively, in Item 1, P denotes the set of additional positions of akS w.r.t. to the core
family game akC , which is, indeed, a proper subgame, as stated in Item 5. Item 2, instead,
formalizes the moves connecting the additional δ℘I positions with the γi of the core,
while Item 3 describes the mutual connection between the δ positions that share the
same doubleton as indexes I. Finally, Item 4 associates each δ℘I with its corresponding
owner ℘ and priority 0. The following lemma proves that such a parity-game family is
indeed a worst-case family.

Lemma 6.1. The SCC family {akS}ωk=1 is a worst-case family.

Proof. To prove that the SCC family of Definition 6.1 is a worst-case family, we need
to show that each game akS is a core extension of akC , i.e., that it complies with the
Definition 3.2. Items 1 and 5 of Definition 6.1 imply Item 1 of Definition 3.2, since the
set P does not contain any position of the core and, in addition, akC is a subgame of akS ,
as all the positions and moves of the core are contained in akS . Item 2 of Definition 3.2
follows from Item 4 of Definition 6.1. Indeed, by Definition 3.1, pr(αi) , k+ i+℘+1,
for i ∈ [0, k] and k ≥ 1, while all the additional positions in P have priority 0. By
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Items 2 and 3 of Definition 6.1, there are no moves connecting positions δI with positions
αi or βi, for any i ∈ [0, k], hence Item 3 of Definition 3.2 is satisfied. Finally, we need
to show that whenever a γi has a move to a position v in P, then v does not have
higher priority, belongs to the opponent of γi, and has a move back to γi (Item 4 of
Definition 3.2). This property is enforced by Items 2 and 4 of Definition 6.1. Indeed, by
the latter, position δ℘I is owned by player ℘. Moreover, by the former, γi, whose owner
is (i + 1) mod 2, can only have a move to δ℘{i,j} if δ℘{i,j} has a move back to γi and
℘ = i mod 2. Hence, the two positions belong to opposite players. Since, in addition,
all positions δ have priority 0, the requirement is satisfied.

Due to the clique-like structure of the new family, it is not hard to see that every game
in the induced subgame tree forms a single SCC. This guarantees that the intertwining
of SCC-decomposition and memoization cannot prevent an exponential worst-case
behavior of the Recursive algorithm on this family.

Lemma 6.2. Each game in the induced subgame tree Gk of the SCC family {akS}ωk=1,
for an arbitrary index k ∈ N+, forms a single SCC.

Proof. Let akw ∈ Gk (resp., âkw ∈ Gk) be a game in the induced subgame tree. By
induction on the structure of the string w, it is not hard to see that, for all indexes
i, j ∈ [0, k] with i 6= j, it holds that γi, γj ∈ akw (resp., γi, γj ∈ âkw) iff the positions
δ℘{i,j} ∈ P, with ℘ ∈ {0, 1}, belong to akw (resp., âkw), as well. For the base case
akε = ak, the thesis trivially follows from Definition 6.1. For the inductive case
âkwx = akw \ A (resp., akwx = âkw \ A), let us assume, as inductive hypothesis, that
the statement holds for akw (resp., âkw). By Definition 4.1, the set A is computed
as the attractor to some set of positions B such that either (i) γi, γj , δ

℘
{i,j} 6∈ A or

(ii) δ℘{i,j} ∈ A and at least one between γi and γj belongs to A, for all i, j ∈ [0, k].
Case (i) arises when B = {αk−2|w|} (resp., B = {αk−2|w|+1}), while Case (ii) when
B = Wn(âkwL). Consequently, the required property on âkwx (resp., akwx) immediately
follows from the inductive hypothesis on w, since, if a position δ℘{i,j} is removed from
the game, also one between γi and γj is removed as well and vice versa. Now, let a be
an arbitrary game in Gk. Thanks to the topology of the games in the SCC family and
to the property on γi, γj ∈ akw (resp., γi, γj ∈ âkw), it easy to see that all positions in
X = {βi, γi, δ℘I ∈ a} form a strongly connected subgame. Indeed, two positions βi and
γi are mutually reachable due to the two moves (βi, γi), (γi, βi) ∈ Mv . Moreover, two
arbitrary positions γi and γj , with i 6= j, are mutually reachable via the positions δ℘{i,j}.
Also, there are no isolated positions δ℘{i,j}. Finally, to prove that a is indeed a single
SCC, it remains just to show that the positions in Y = {αi ∈ a} can reach and can be
reached by those in X. The first part is implied by Item 1 of Lemma 4.1, since every
αi has only a move to βi, which needs to belong to a in order for this to be a game.
Now, due to the same observation, all positions αi, but possibly the last one αm with
maximal index m in a, are reachable by βi+1. Finally, αm can be reached by γm−1,
which necessarily belongs to a due to Item 3 of the same lemma.

Putting everything together, we obtain the following structural, although non asymp-
totic, strengthening of Theorem 4.1.
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Theorem 6.1 (SCC-Decomposition Worst Case). The number of distinct recursive
calls executed by the Recursive algorithm with SCC decomposition on a game with n
positions is Ω

(
2
√
n/3
)

in the worst case.

Proof. Due to Lemma 6.1, the SCC family is an exponential worst-case family. As
shown in the proof of Theorem 4.1, the Recursive algorithm performs at least 3(2bk/2c+1−
1) calls to solve a game of {ak}ωk=1, and therefore, of {akS}ωk=1. As consequence of
Lemma 6.2, the number of calls cannot be affected by an SCC-decomposition technique,
since there is an exponential number of subgames, the ones in the induced subgame
tree of akS , each of which forms a single SCC. Moreover, a core game akC has 3(k + 1)
positions, while the number of additional positions P in the extension akC is given by
3k2+℘

4 + k, which follows from Definition 6.1. Indeed, for every pair of positions γi, γj ,
with i, j ∈ [0, k] and i 6= j, there is a single position δ℘{i,j}, if i ≡2 j, and two such

positions, otherwise. Hence, akS has n , 3k2+℘
4 + 4k + 3 positions, from which we

obtain that k =

√
4(3n+7)−3℘−8

3 =

⌈√
4(3n+7)−3

⌉
−8

3 =
d√12n+25e−8

3 . As a conse-

quence, the number of recursive calls is bounded from below by 3

(
2

⌊
d√12n+25e−2

6

⌋)
=

Ω
(

2
√
n/3
)

.

7. Dominion-Decomposition Resilient Games

A deeper analysis of the SCC family reveals that the size of the smallest dominion
for player 0 in Game akS (there are no dominions for player 1, being the game completely
won by its opponent) is of size k + 1. This observation, together with the fact that the
game has n = 3k2+℘

4 + 4k + 3 < (k + 1)2 positions, immediately implies that the
proposal of [36, 37] of a brute force search for dominions of size at most d

√
n e < k+ 1

cannot help improving the solution process on these games. We can prove an even
stronger result, since this kind of search cannot reduce the running time in any of the
subgames of the induced tree. The reason is that the smallest dominion in each such
subgame that contains at least a position in the core has size linear w.r.t. k, as reported
by the following lemma.

Lemma 7.1. For all k ∈ N+, let a be a subgame in the induced subgame tree Gk of
akS , and D ⊆ a the smallest dominion such that D ∩ akC 6= ∅. Then, |D| ≥ bk/2c+ 1.

Proof. We start by proving that any such dominion D must necessarily contain at least
a position γi, from some i ∈ N+. Assume, by contradiction, that it does not. Then,
D ⊆ {αi, βi ∈ a : i ∈ [0, k]} ∪ P. We can prove that D is not a game. By assumption,
D must contain at least one position αi or βi, otherwise D ∩ akC = ∅. Let j be the
smallest index such that αj ∈ D or βj ∈ D. Then, at least one of those two positions
has only moves leading outside D. Hence D is not a game and, a fortiori, cannot be a
dominion.

Therefore, D must contain at least a position γi. By Definition 6.1, γi is connected
in akS to precisely k positions δ℘{i,j}, where j ∈ [0, k], j 6= i, and whose owner ℘ ≡2 i
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is the adversary of the owner ℘ of γi. Let us consider the bk/2c indexes j ∈ [0, k] such
that i 6≡2 j. For each such j, we have two cases, depending on whether γj belongs to a
or not. If it does, then so does δ℘{i,j}, since both are owned by the same player ℘ and are
mutually connected. If it does not, then it must have been removed by some application
of Item 2 of Definition 4.1. If the involved attractor w.r.t. some player ℘′ does not attract
δ℘{i,j}, then it cannot attract δ℘{i,j} either, as it has no moves to γj . If, on the other hand,

δ℘{i,j} gets attracted, it must belong to player ℘′. As a consequence, δ℘{i,j} belongs to the
opponent player ℘′, in other words ℘ = ℘′. In either case, we conclude hat δ℘{i,j} cannot
be removed and, therefore, is still contained in a. In addition, all the bk/2c positions
δ℘{i,j}, with j ∈ [0, 2k] and j 6≡2 i, are mutually connected to γi and their owner is the
opponent of the one of γi. It is immediate to see that if i is the greatest index such that
γi ∈ a, then it is contained in the smallest dominion D in a, toghether with the bk/2c
positions δ℘{i,j} connected to it. Hence, D contains at least bk/2c+ 1 positions.

The above observation allows us to obtain an exponential lower bound for the
Recursive algorithm combined with memoization, SCC decomposition, and dominion
decomposition techniques. Indeed, the brute-force procedure employed by the Dominion
Decomposition algorithm of [36] needs at least time Ω

(
2bk/2c+1

)
to find a dominion of

size bk/2c+ 1.
Inspired by the Dominion Decomposition approach, in a game with n positions

and p priorities, the BigStep algorithm [39] tries to find a dominion of size bounded
by π = 3

√
pn2 before each call to the internal recursive algorithm. Unlike Dominion

Decomposition, however, the search is not performed via a brute-force procedure. Big
Step employs, instead, a modified version of the SPM algorithm in which the search
space of the possible measures evaluated during the lift computation is suitably limited
by the parameter π. Moreover, this procedure, called approximate, does not look for an
arbitrary dominion, but for one of the opposite player ℘ w.r.t. the parity of the maximal
priority in the current subgame. Since player ℘ is also the winning player of a game
akS in the SCC family, the approximate SMP procedure is called w.r.t. player ℘ so that,
if a fixpoint different from > is reached, a ℘-dominion of the desired size exists. For
akS , such a ℘-dominion actually exists, therefore a fixpoint different from > would be
reached, thus making the argument in the proof of Lemma 5.2 not applicable. The
following lemma, however, shows that even if a fixpoint is reached, the number of lifts
performed is still exponential in the index of the game.

Lemma 7.2. The solution time of the Big Step approximate subroutine on an element
akS of a worst-case family {akS}ωk≥1 is Ω

(
6
k
2

)
.

Proof. The exploited SPM variant on the game akS for player ℘ = pr(αk) mod 2 =
1 − k mod 2 uses measures m ∈ M℘ \ {>} such that

∑
d∈dom(m)m(d) < π, where

π = 3
√
pn2 with p = 2(k + 1) and n = 3k2+℘

4 + 4k + 3. Similarly to the argument
in the proof of Lemma 5.2, every such measure is isomorphic to a (k + 1)-tuple
〈b k−℘

2
, . . . , b0, t k+℘

2 −1, . . . , t0〉 of numbers, with bi ∈ {0, 1}, for all i ∈ [0, k−℘2 ],

ti ∈ {0, 1, 2}, for all i ∈ [1, k+℘
2 − 1], and t0 ∈ [0, 3k2+℘

4 + k + 2], if ℘ = 1, and
t0 ∈ {0, 1, 2}, otherwise. Note, indeed, that a game of the SCC family of index
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k contains precisely 3k2+℘
4 + k + 2 nodes with priority 0. Therefore, it is easy to

observe that all measures m with t0 ∈ {0, 1, 2} satisfy the above restriction, since∑
d∈dom(m)m(d) ≤

∑ k−℘
2

i=0 1+
∑ k+℘

2 −1
i=0 2 = k−℘

2 +1+2k+℘
2 = 3k+℘

2 +1 < π. Now,
as noted above, the smallest ℘-dominion contained into akS has size k + 1 < π, hence,
the approximate subroutine will find it once a fixed point ιω = µι.lift℘(ι) of the lift℘

function is reached. Due to the structure of the core family, such a fixed point maps all
positions αi, βi, γi to the following measures:

• for all i ∈ [0, k−℘2 ] and d ∈ [0, 2k + 1 + ℘] with d ≡2 ℘, it holds that ιω(αk−2i)(d) =
ιω(αk−2i−1)(d) = 1, if d ≥ 2(k−i)+1+℘, and ιω(αk−2i)(d) = ιω(αk−2i−1)(d) =
0, otherwise; intuitively, the measures associated with the positions αk−2i and
αk−2i−1 are isomorphic to the (k + 1)-tuple 〈1, . . . , 1, 0, . . . , 0〉, where only the
first i+ 1 components are set to 1, while the remaining ones to 0;

• for all d ∈ [0, 2k + 1 + ℘] with d ≡2 ℘, it holds that ιω(βk)(d) = ιω(γk)(d) = 0;
intuitively, βk and γk belong to the ℘-dominion contained into akS and no lift is
ever performed on their measures;

• for all i ∈ [0, k−℘2 [, it holds that ιω(β2i+℘) = ιω(γ2i+℘) = ιω(α2i+℘+1);
intuitively, the positions β2i+℘ and γ2i+℘ just propagate the measure associated
with the α2i+℘+1 position to which they are connected, since the parity of their
priority is not congruent to the player ℘ w.r.t. which the execution of the algorithm
is performed;

• for all i ∈ [0, k−℘2 ] and d ∈ [0, 2k + 1 + ℘] with d ≡2 ℘, it holds that ιω(γ2i+℘)(d) =
1, if d ≥ 2(k − i) + 1 + ℘ or d = 2i + ℘, and ιω(γ2i+℘)(d) = 0, otherwise;
intuitively, the measure associated with γ2i+℘ needs to be the smallest one greater
than the one associated with α2i+℘+1 w.r.t. the truncation priority 2i+ ℘, since
the parity of the latter is congruent to the player ℘;

• finally, for all i ∈ [0, k−℘2 ] and d ∈ [0, 2k + 1 + ℘] with d ≡2 ℘, it holds that
ιω(β2i+℘)(d) = 1, if d ≥ 2(k − i) + 1 + ℘, ιω(β2i+℘)(d) = 2, if d = 2i + ℘,
and ιω(β2i+℘)(d) = 0, otherwise; intuitively, the measure associated with β2i+℘

needs to be the smallest one greater than the one associated with γ2i+℘ w.r.t. the
truncation priority 2i+ ℘, since the parity of the latter is congruent to the player
℘.

By applying Lemma 5.1, we can observe that, during the computation of the lifts
and before reaching the final measure ιω(γ℘), position γ℘ is assigned all measures in
M℘\{>} smaller than or equal to ιω(γ℘) that satisfy the previously described restriction.
Now, it is easy to see that there are at least 2℘ ·6 k+℘2 −3

k+℘
2 +1 measuresm ∈ M℘\{>}

with m(℘) ∈ {0, 1, 2} smaller than ιω(γ℘). Indeed, (i) every such measure can be

interpreted as the following natural number 3
k+℘
2

(∑ k−℘
2

i=0 2i ·m(k + 1 + ℘+ 2i)

)
+(∑ k+℘

2 −1
i=0 3i ·m(2i+ ℘)

)
, (ii) every lift of γ℘ increments the value associated with its
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measure just by one, and (iii) the value of ιω(γ℘) is precisely 3
k+℘
2

(∑ k−℘
2

i=0 2i
)

+ 1 =

3
k+℘
2

(
2
k−℘

2 +1 − 1
)

+ 1 = 2℘ · 6 k+℘2 − 3
k+℘
2 + 1 = Ω

(
6
k
2

)
.

As a consequence, none of the dominion decomposition approaches, combined with
memoization and SCC decomposition, can efficiently solve the SCC family.

Corollary 7.1 (Exponential Dominion-Decomposition Worst Case). The solution time
of the Recursive algorithm with memoization, SCC decomposition, and dominion de-
composition on a game with n positions is Ω

(
2Θ(
√
n)
)

in the worst case.

8. Discussion

Existence of a polynomial-time solution algorithm for Parity Game is a long standing
open problem ever since [14, 4]. The revival of interest on the subject stems from the
recent result of Calude et al. [8], which shows that the problem can be solved in quasi-
polynomial time. That result led to two quasi-polynomial-time algorithms, proposed by
Jurdziński and Lazic [43] and Fearnley et al. [44]. Both these algorithms essentially look
for a compact form of progress measure, whose existence provide a winning strategy for
one of the players. Their quasi-polynomial complexity derives from the compactness
of the representation of the corresponding measure space employed. However, the
practical effectiveness of the resulting procedures, as assessed in [52, 57], does not
seem to rival with existing exponential algorithms, such as the Recursive algorithm or
Priority Promotion. More importantly, recent results (see, e.g., [58]) also suggest that
these compactness results may not be further improved, thereby raising the question
whether the road to a polynomial solution may lie somewhere else. We believe that
a better understanding of the weaknesses of the existing algorithmic solutions may
provide deeper insights into the problem and potentially lead to new solutions.

The contribution of this paper towards this end is a family of parity games, which, de-
spite their simplicity, proves to be quite challenging for different solution approaches and
provide a lower bound on the execution time for both exponential and quasi-polynomial
algorithms. The family is also resilient to effective heuristics, such as memoization
and game decomposition techniques, that, in some cases, can be used to break existing
lower bounds. In particular, we have shown that solving games in this family requires
exponential time for the Recursive algorithm, regardless of whether it is endowed with
memoization, SCC-decomposition or dominion decomposition techniques. The family
also provides a lower bound to progress measure based approaches. We have shown
that solving these games requires exponential time for Small Progress Measure [29]
and quasi-polynomial time for its succinct version [43], for which no lower bound was
available. We conjecture that the same family also requires quasi-polynomial time for
QPT, the quasi-polynomial algorithm proposed in [44]. The game family studied in
this paper can, however, be solved in polynomial time by all the Priority Promotion-
based algorithms [52, 41, 42] and by Strategy Improvement [59]. While distinct lower
bounds exist for these two approaches as well, a simple and uniform worst case fam-
ily that encompasses all the solution algorithms, possibly including the more recent
quasi-polynomial algorithms proposed in [48, 51], is left as future work.
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