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a b s t r a c t

We consider finite graphs whose edges are labeled with elements, called colors, taken from
a fixed finite alphabet. We study the problem of determining whether there is an infinite
path where either (i) all colors occur with a fixed asymptotic frequency, or (ii) there is
a constant that bounds the difference between the occurrences of any two colors for all
prefixes of the path. These properties can be viewed as quantitative refinements of the
classical notion of fair path in a concurrent system,whose simplest form checkswhether all
colors occur infinitely often. Our notions provide stronger criteria, particularly suitable for
scheduling applications based on a coarse-grainedmodel of the jobs involved. In particular,
they enforce a given set of priorities among the jobs involved in the system. We show
that both problems we address are solvable in polynomial time, by reducing them to the
feasibility of a linear program.We also consider two-player games played on finite colored
graphs where the goal is one of the above frequency-related properties. For all the goals,
we show that the problem of checking whether there exists a winning strategy is Co-NP-
complete.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Colored graphs, which are graphs with color-labeled edges, are a model widely used in the field of computer science that
deals with the analysis of concurrent systems [15]. For example, they can represent the transition relation of a concurrent
program. In this case, the color of an edge indicates which process is making progress along that edge. A basic property of
interest for these applications is fairness. This property essentially states that, during an infinite computation, each process
is allowed to make progress infinitely often [9]. Starting from this core idea, a rich theory of fairness has been developed,
as witnessed by the amount of literature devoted to the subject (see, for instance, [7,12,13]). In the abstract framework
of colored graphs, the above basic version of fairness asks whether, along an infinite path in the graph, each color occurs
infinitely often. Such a requirement does not put any bound on the number of steps that a process needs to wait before
it is allowed to make progress. As a consequence, the asymptotic frequency of some color could be zero, even if the path
is fair. Accordingly, several authors have proposed stronger versions of fairness. Alur and Henzinger define finitary fairness
roughly as the property requiring that there is a fixed bound on the number of steps between two occurrences of any given
color [1,4]. A similar proposal, supported by a corresponding temporal logic, wasmade byDershowitz et al. [8]. On a finitarily
fair path, all colors have positive asymptotic frequency. These definitions of fairness treat the frequencies of the relevant
events in isolation and in a strictly qualitative manner. They only distinguish between zero frequency (not fair), limit-zero
frequency (fair, but not finitarily so), and positive frequency (finitarily fair).

In this article we propose three fairness notions based on quantitative comparisons between competing events. The
bounded-difference path property requires that there is a numerical constant bounding the difference between the number
of occurrences of any two colors, for all prefixes of the path. The balanced path property requires that all colors occur with
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the same asymptotic frequency, i.e., the long-run average number of occurrences for each of them is the same. It is easy
to see that bounded-difference paths are special cases of finitarily fair paths. On the other hand, finitarily fair paths and
balanced paths are incomparable notions (see Example 1).

We believe that the proposed notions are valuable to some applications, perhaps quite different from the ones in which
fairness is usually applied. Both the balance property and the bounded-difference property are probably too strong for the
applications where one step in the graph represents a fine-grained transition of unknown length in a concurrent program.
In that case, it may be of little interest to require that all processes make progress with the same (abstract) frequency. On
the other hand, consider a context where each transition corresponds to some complex or otherwise lengthy operation. As
an example, consider the model of a concurrent program where all operations have been disregarded, except the access
to a peripheral that can only be used in one-hour slots, such as a telescope, which requires some time for repositioning.
Assuming that all jobs have the same priority, it is certainly valuable to find a scheduling policy that assigns the telescope
to each job with the same frequency. As a non-computational example, the graph may represent the rotation of cultures
on a crop, with a granularity of 6 months for each transition [21]. In that case, we may very well be interested not just in
having each culture eventually planted (fairness) or even planted within a bounded amount of time (finitarily fair), but also
occurring with the same frequency as any other culture (balanced or bounded-difference).

Sometimes, systems require that some jobs are executed more often than others. In such a situation, it is useful to
associate to each job a ‘‘priority’’ representing how often that job should be executed compared to the others. Priority
scheduling is a problem widely studied in computer science [14], usually with the objective of minimizing the execution
time of a given computation. In general, a priority scheduling problem is NP-hard [14] and becomes solvable in polynomial
time if there are some restrictions on the nature of the system [5]. We address and solve a new scheduling problem for a
system characterized by a finite number of states and infinite computation. We are interested in an execution of the system
that spends a given fraction of time on each job. In our framework, the problem translates in looking for a path where each
color occurs with some fixed asymptotic frequency. We call it the frequency-f problem.

A natural extension consists in introducing a second decision agent in the system, thus switching from graphs to games.
Games arewidely used in computer science to describe the interaction between a system and its environment [11,16,20,22].
Usually, the system is a component that is under the control of its designer and the environment represents all the
components the designer has no direct control of. In this context, a game allows the designer to check whether the system
can force some desired behavior (or avoid an undesired one) independently of the choices of the other components. In this
paper, we address and study two-player colored games, i.e., games where the underlying graph is a colored graph and the
game is played between two players, whichwe refer to as player 0 and player 1. In particular, we focus on the goal for player
0 to construct an infinite path which is quantitatively fair in the sense described earlier.

We believe that the game model can be useful in several formal verification contexts. Coming back to the scheduling
application, it can be useful in the case the scheduler allows for a certain degree of freedom on the choices of lengthy jobs
that have to be executed by some components. More specifically, assume that due to a design issue, the main scheduler can
decide which macro-operation has to be executed and then some other scheduler chooses which sub-operation to perform.
In this context, our game model allows the designer to check if the main scheduler has the ability to force a fair progress of
the activities, independently of the sub-choices of the other scheduler(s). A concrete example is provided in Section 2.3. Our
main result shows that, in a game where the goal of player 0 is the construction of a balanced or bounded-difference path,
the problem of asking whether this player can always force such a path is Co-NP-complete.

The present paper is an improved and extended version of [2,3], including detailed proofs of all results and the novel
result of NP-completeness for the perfectly balanced finite path problem.

Overview. The rest of the paper is organized as follows. In Section 2, we introduce some preliminary notation and the
formalization of the problems described above. In Section 3, we introduce basic properties on game graphs which will
be used in the next sections. Section 4 establishes, for a given graph, connections between the existence of balanced or
bounded-difference paths, as well as certain loop-based properties. In Section 5, we consider systems of linear equations
and show that the bounded or frequency-f problem can be reduced to their feasibility. In Section 6, we show that a closely
related problem, namely the perfectly balanced finite path problem, is NP-complete. In Section 7, we introduce colored
games with balanced, bounded, and frequency goals and show that, in all cases, the problem of deciding whether player 0
has a winning strategy starting from a given node of the game is Co-NP-complete.

2. Preliminaries

2.1. Colored graphs

Let X be a set and i be a positive integer. By X i we denote the Cartesian product of X with itself i times. By N, Z, Q, and R
we respectively denote the set of natural, integer, rational, and real numbers. Given a positive integer k, let [k] = {1, . . . , k}
and [k]0 = [k] ∪ {0}.

A k-colored graph (or simply graph) is a pair G = (V , E), where V is a finite set of nodes and E ⊆ V × [k] × V is a set of
colored edges. We employ integers as colors for technical convenience. All the results we obtain also hold for an arbitrary
set of labels. An edge (u, a, v) is said to be colored with a. In the following, we also simply call a k-colored graph a graph,
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when k is clear from the context. For a node v ∈ V we call v→ = {(v, a, w) ∈ E} the set of edges exiting from v, and
v← = {(w, a, v) ∈ E} the set of edges entering in v. For a color a ∈ [k], we call E(a) = {(v, a, w) ∈ E} the set of edges
colored with a. For a node v ∈ V , a finite v-path ρ is a finite sequence of edges (vi, ai, vi+1)i∈{1,...,n} such that v1 = v. The
length of ρ is |ρ| = n. We denote by ρ(i) the ith edge of ρ, and we sometimes write ρ as v1v2 . . . vn, when the colors are
unimportant. A finite path ρ = v1v2 . . . vn is a loop if v1 = vn. A loop v1v2 . . . vn is simple if vi ≠ vj, for all 1 ≤ i < j < n. An
infinite v-path is defined analogously, i.e., it is an infinite sequence of edges. Let ρ be a finite path and π be a possibly infinite
path, we denote by ρ · π the concatenation of ρ and π . We denote by ρω the infinite path obtained by concatenating ρ with
itself infinitely many times, and by

∏
i ρi the concatenation of an infinite sequence of finite paths ρi. A graph G is strongly

connected if for each pair (u, v) of nodes there is a finite u-path with last node v and a finite v-path with last node u.
For a finite or infinite path ρ and an integer i, we denote by ρ≤i (resp., ρ>i) the prefix (resp., suffix) of ρ (resp., not)

containing the first i edges. For a color a ∈ [k], we denote by ‖ρ‖a the number of edges labeled with a occurring in
ρ. For two colors a, b ∈ [k], we denote the difference between the occurrences of edges labeled with a and b in ρ by
diff a,b(ρ) = ‖ρ‖a−‖ρ‖b. For all finite paths ρ ofG, with a slight abuse of notation let diff (ρ) = (diff 1,k(ρ), . . . , diff k−1,k(ρ))
(resp. ‖ρ‖ = (‖ρ‖1, . . . , ‖ρ‖k)) be the vector containing the differences between each color and color k, which is taken as a
reference (resp. the number of occurrences of each color). We call diff (ρ) (resp. ‖ρ‖) the difference vector (resp. color vector)
of ρ1. Given a finite set of loops L = {σ1, . . . , σl} and a tuple of positive natural numbers c1, . . . , cl, we call natural linear
combination (in short, n.l.c.) of L with coefficients c1, . . . , cl the set T = {(σ1, c1), . . . , (σl, cl)}. The difference value of T

is the vector of color differences obtained by traversing ci times each loop σi, i.e.,
∑l

i=1 cidiff (σi). The frequency of T is the

vector of color frequencies obtained by traversing ci times each loop σi, i.e.,
∑l

i=1 ci‖σi‖∑l
i=1 ci|σi|

. An infinite path π is periodic iff there

exists a finite path ρ such that π = ρω . A loop σ is perfectly balanced iff diff a,b(σ ) = 0 for all a, b ∈ [k]. Finally, we denote by
0 and 1 the vectors containing only 0’s and 1’s, respectively. We can now define the decision problems that are the subject
of the present paper.

The bounded-difference problem. Let G be a k-colored graph. An infinite path ρ in G has the bounded-difference property (or,
is a bounded-difference path) if there exists a number c ≥ 0, such that, for all a, b ∈ [k] and i > 0,

|diff a,b(ρ
≤i)| ≤ c.

The bounded-difference problem is to determine whether there is a bounded-difference path in G.

The frequency-f problem. Let G be a k-colored graph, and f ∈ Qk be a vector such that
∑k

a=1 fa = 1. An infinite path ρ in G
has frequency f if for all a ∈ [k],

lim
i→+∞

‖ρ≤i‖a

i
= fa.

The frequency-f problem is to determine whether there is a path with frequency f in G. In the particular case that all
components in the frequency vector f are equal to 1

k , the frequency-f problem is also called balance problem and a path
with such a frequency is called balanced. Observe that all bounded-difference paths are balanced. The following example
shows that the converse does not hold.
Example 1. For all i > 0, let σi = (1 ·2)i ·1 ·3 · (1 ·3 ·2 ·3)i ·1 ·3 ·3. Consider the infinite sequence σ =

∏
i σi. Observe that

σ is not a bounded-difference path because at the beginning of each σi the difference between color 1 and color 3 grows
linearly with i. The fact that σ is balanced can be verified by computing the appropriate limits. Moreover, we formally prove
it in Example 2.

Notice that the initialized versions of the above decision problems, i.e., those obtained by fixing an initial node for the
graph, are linear-time reducible to the original ones. It is sufficient to perform a strongly connected component analysis of
the graph and then solve the original problem separately on each component. A node satisfies the initialized version of a
problem if and only if it can reach a component that satisfies the original version of the problem.

2.2. Games

A k-colored arena is a k-colored graphwhose set of nodes is partitioned in two sets V0 and V1 and contains a starting node.
Formally a k-colored arena is a tuple A = (V0, V1, vini, E), where V0 ∩ V1 = ∅, (V0 ∪ V1, E) is a k-colored graph and vini is
the initial node. A k-colored game is a pair G = (A,W ), where A = (V0, V1, vini, E) is a k-colored arena and W ⊆ [k]ω is a
set of color sequences called goal. We assume that the game is played by two players, referred to as player 0 and player 1.
The players construct a path starting at vini on the arena A, such a path is called play. Once the partial play reaches a node
v ∈ V0, player 0 chooses an edge exiting from v and extends the play with this edge; once the partial play reaches a node
v ∈ V1, player 1 makes a similar choice. Player 0’s aim is to obtain a play whose color sequence belongs to W , while player
1’s aim is the opposite.

1 The difference vector is related to the Parikh vector [18] of the sequence of colors of the path. Precisely, the difference vector is equal to the first k− 1
components of the Parikh vector, minus the kth component.
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Fig. 1. A job in a concurrent program.

Fig. 2. The non-preemptive scheduling game corresponding to two jobs of the type in Fig. 1.

For h ∈ {0, 1}, let Eh = {(v, c, w) ∈ E | w ∈ Vh} be the set of edges ending into nodes of player h. Let ε be the empty
word, a strategy for player h is a function σh : ε ∪ (E∗Eh) → E such that, if σh(e0 . . . en) = en+1, then the destination of en
is the source of en+1, and if σh(ε) = e, then the source of e is vini. Intuitively, σh fixes the choices of player h for the entire
game, based on the previous choices of both players. The value σh(ε) is used to choose the first edge in the game. A strategy
σh is memoryless iff its choices depend only on the last node of the play, i.e., for all plays ρ and ρ ′ with the same last node,
it holds that σh(ρ) = σh(ρ ′). An infinite play {ei}i∈N ∈ Eω is consistent with a strategy σh iff (i) if vini ∈ Vh then e0 = σh(ε),
and (ii) for all i ∈ N, if ei ∈ Eh then ei+1 = σh(e0 . . . ei). A strategy for player 0 (resp., player 1) is said winning iff the color
sequence of all plays consistent with that strategy belong to the goal W (resp., [k]ω \W ). A game is said determined iff one
of the two players has a winning strategy.

Now we recall some definitions and results developed in [10]. A goal W ⊆ [k]ω is said to be prefix independent iff for
all color sequences x ∈ [k]ω , and for all z ∈ [k]∗, we have x ∈ W iff zx ∈ W . For two color sequences x, y ∈ [k]ω , the
shuffle of x and y, denoted by x ⊗ y is the language of all the words z1z2z3 . . . ∈ [k]ω , such that z1z3 . . . z2h+1 . . . = x and
z2z4 . . . z2h . . . = y, where zi ∈ [k]∗ for all i ∈ N. A goal W is said to be convex iff it is closed w.r.t. the shuffle operation, i.e.,
for all words x, y ∈ W , it holds that x⊗ y ⊆ W .

Theorem 1 ([10]). Let G = (A,W ) be a k-colored game such that W is prefix independent and convex. Then, the game is
determined. Moreover, if player 1 has a winning strategy, he has a memoryless winning strategy.

2.3. A scheduling example

Consider two jobs in a concurrent program, both having the structure shown in Fig. 1. Note that the jobs exhibit
nondeterministic behavior, due to the unknown (i.e., not explicitly modeled) branching condition on line 1.

Assume that we want to synthesize a scheduler ensuring that the ‘‘action’’ function is called with the same asymptotic
frequency by the two jobs. The scheduler can decide not to give the lock to a job, but cannot pre-empt them. To this aim, we
can produce a game as in Fig. 2, where nodes represent joint configurations of the two jobs. The unique node of player 0 is
represented by a circle, while the nodes of player 1 are represented by boxes. Since we are only interested in counting the
calls to the action function, we only color the edges representing such calls. Clearly, uncolored edges can be represented
in our framework by a sequence of two edges, each labeled by a different color. The internal nondeterminism of the jobs is
modeled by a move of player 1. The only choice for player 0 (the scheduler) occurs in the node (0, 0), where both jobs are
waiting on the lock operation, and the scheduler can choose whom to give the lock to.

It is easy to verify that the scheduler has a strategy enforcing the bounded-difference property (hence, the balance
property as well): when the game is in (0, 0), it gives the lock to the job that executed the action function less times
so far. According to this scheduling policy, the difference between the numbers of 0’s and 1’s along a play is always at most
2, regardless of the choicesmade by the internal nondeterminism of the jobs. Note that this strategy requiresmemory. Using
a similar strategy, player 0 can also win w.r.t. the frequency-f goal, for all (rational) frequency vectors f .
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3. Basic properties

3.1. Connected and overlapping loops

In this section, we assume that G = (V , E) is a finite k-colored graph, i.e., both V and E are finite. Two loops σ and σ ′
in G are connected if there exists a path from a node of σ to a node of σ ′, and vice versa. A set L of loops in G is connected
if all pairs of loops in L are connected. Two loops in G are overlapping if they have a node in common. A set L of loops in
G is overlapping if, for all pairs of loops σ , σ ′ ∈ L, there exists a sequence σ1, . . . , σn of loops in L such that (i) σ1 = σ ,
(ii) σn = σ ′, and (iii) for all i = 1, . . . , n−1, it holds that (σi, σi+1) are overlapping. Given a set of loopsL in G, the subgraph
induced by L is G′ = (V ′, E ′), where V ′ and E ′ are the nodes and the edges, respectively, belonging to a loop in L.

Lemma 1. Let G be a graph, L be a set of loops in G, and G′ = (V ′, E ′) be the subgraph of G induced by L, then the following
statements are equivalent:

1. L is overlapping.
2. The subgraph G′ is strongly connected.
3. There exists u ∈ V ′ such that for all v ∈ V ′ there exists a path in G′ from u to v.

Proof (1⇒ 2). If L is overlapping, then, for all pairs of loops σ1, σ2, there exists a sequence of loops that links σ1 with σ2.
Thus, from any node of σ1, it is possible to reach any node of σ2. Hence, G′ is strongly connected.

[2⇒ 3] Trivial.
[3 ⇒ 2] Let u ∈ V ′ be a witness for item 3. Let v,w ∈ V ′, we prove that there is a path from v to w. We have that u is

connected to both v and w. Since all edges in G′ belong to a loop, for all edges (u′, ·, v′) along the path from u to v, there is
a path from v′ to u′. Thus, there is a path from v to u, and so, a path from v tow, through u.

[2⇒ 1] If G′ is strongly connected, for all σ1, σ2 ∈ L there is a path ρ in G′ from each node of σ1 to each node of σ2. This
fact holds since G′ is induced by L, so, ρ uses only edges of the loops in L. While traversing ρ, every time we move from
one loop to the next one, these two loops must share a node. Therefore, all pairs of adjacent loops used in ρ are overlapping.
Thus L is overlapping. �

The above lemma implies that if L is overlapping then it is also connected, since G′ is strongly connected.

3.2. Segmentation and composition

For a path σ and an edge e, denote by |σ |e the number of times that e occurs in σ . We say that a loop is a composition
of a finite tuple of simple loops T if it is obtained by using all and only the edges of T as many times as they appear in T .
Formally, the loop σ is a composition of T = (σ1, . . . , σl) if, for all edges e, it holds |σ |e =

∑l
i=1 |σi|e). Observe that distinct

loops can be a composition of the same tuple of simple loops T .
Given a finite path ρ, we define its quasi-segmentation and its rest. Intuitively, the idea is to decompose ρ into a sequence

of simple loops, plus the remaining simple path that does not form a loop (the rest). We proceed by induction on |ρ|.

1. The quasi-segmentation is a sequence of simple loops, and the rest is a simple path. The rest is either empty or ending
with the last node of ρ.

2. If ρ has length 1 and it is not a loop, then its quasi-segmentation is the empty sequence and its rest is ρ itself.
3. If ρ has length 1 and it is a loop, then its quasi-segmentation is ρ itself and its rest is the empty sequence.
4. If ρ has size n, let ρ ′ = ρ≤n−1, let σ1, . . . , σn be the quasi-segmentation of ρ ′ and r be its rest. Consider the path r ′

obtained by extending r with the last edge of ρ (this can be done because the last node of r is the last node of ρ ′).
(a) If r ′ does not contain a loop, then the quasi-segmentation of ρ is σ1, . . . , σn and the rest is r ′. Observe that r ′ ends

with last node of ρ.
(b) If r ′ contains a loop σ , this loop is due to the last added edge, i.e., r ′ = r ′′σ . In this case the quasi-segmentation of ρ

is σ1, . . . , σn, σ and the rest is r ′′. Observe that if r ′′ is not empty, then it ends with the first node of σ which is also
equal to its last node, hence it equal the last node of r ′, and to the last node of ρ.

The quasi-segmentation of an infinite path ρ is the infinite sequence of loops given by the limit of the quasi-segmentation
of ρ≤n, for n→+∞. An infinite path has no rest.

Lemma 2. The following statements hold:

1. A path ρ is a composition of its quasi-segmentation and its rest. If the rest is not empty, then it starts with the starting node of
ρ and ends with the last node of ρ .

2. A loop is a composition of its quasi-segmentation.
3. A loop of length n containing m distinct nodes is a composition of at least ⌈ n

m⌉ simple loops.

Proof. [1] The proof is by induction on the length of ρ. The base case is trivial both if ρ is a loop and if it is not. For the
inductive case: let n = |ρ|, ρ ′ = ρ≤n−1, σ1, . . . , σl be the quasi-segmentation of ρ ′ and r be its rest. By inductive hypothesis,
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ρ ′ is a composition of σ1, . . . , σl and r; moreover if r is not empty, it starts with the starting node of ρ ′. Consider the path r ′
obtained by extending r with the last edge of ρ, i.e., r ′ = r · ρ(n).
1. If r ′ does not contain a loop, then the quasi-segmentation of ρ is σ1, . . . , σl and the rest is r ′. Observe that r ′ starts with

the starting node of ρ ′ which is also the starting node of ρ. Moreover, for all edges e ≠ ρ(n) we have |ρ|e = |ρ ′|e =
|r|e +

∑l
i=1 |σi|e = |r

′
|e +

∑l
i=1 |σi|e. Also, |ρ|ρ(n) = |ρ

′
|ρ(n) + 1 = |r|ρ(n) + 1+

∑l
i=1 |σi|ρ(n) = |r

′
|ρ(n) +

∑l
i=1 |σi|ρ(n).

Hence, the thesis.
2. If r ′ contains a loop σ , this loop is due to the last added edge, i.e., r ′ = r ′′σ . In this case the quasi-segmentation of ρ is
σ1, . . . , σl, σ and the rest is r ′′. Observe that if r ′′ is not empty, then it starts with the starting node of ρ ′ which is also the
starting node of ρ. Moreover, for all edges e ≠ ρ(n)we have |ρ|e = |ρ ′|e = |r|e+

∑l
i=1 |σi|e = |r

′′
|e+ |σ |e+

∑l
i=1 |σi|e.

Also |ρ|ρ(n) = |ρ ′|ρ(m) + 1 = |r|ρ(n) + 1 +
∑l

i=1 |σi|ρ(n) = |r
′
|ρ(n) +

∑l
i=1 |σi|ρ(n) = |r

′′
|ρ(n) + |σ |ρ(n) +

∑l
i=1 |σi|ρ(n).

Hence, ρ is a composition of the quasi-segmentation and its rest.

[2] Since in a loop the extremes coincide, and since the rest of a quasi-segmentation is a simple path, the rest of a quasi-
segmentation of a loop is necessarily empty.

[3] σ is the decomposition of its quasi-segmentation. Since a simple loop of the quasi-segmentation contains at most m
nodes, the tuple contains at least ⌈ n

m⌉ simple loops. �

4. Graph-theoretic characterizations

In this section, we present some preliminary results that connect the existence of bounded, balanced, and frequency-f
paths in a colored graph to the existence of a set of perfectly balanced loops. Later, such a characterization is used to solve
the problems that we stated in Section 2.

4.1. Bounded-difference characterization

Given a graph, if there is a perfectly balanced loop σ , it is easy to see that σω is a periodic bounded-difference path.
Moreover, if ρ is an infinite bounded-difference path, then there is a constant c such that the absolute value of all color
differences is smaller than c. Since both the set of nodes and the possible difference vectors along ρ are finite, we can find
two indexes i < j such that ρ(i) = ρ(j) and diff (ρ≤i) = diff (ρ≤j). So, σ ′ = ρ(i)ρ(i+ 1) . . . ρ(j) is a perfectly balanced loop.
Thus, the following holds.
Lemma 3. Given a graph G, the following statements are equivalent: (i) there exists a bounded-difference path; (ii) there exists a
periodic bounded-difference path; (iii) there exists a perfectly balanced loop.
We now prove the following result.
Lemma 4. Let G be a graph. There exists a perfectly balanced loop in G iff there exists an overlapping set L of simple loops of G,
such that L has an n.l.c. with difference value 0.
Proof (Only if). If there exists a perfectly balanced loop σ , by Lemma 2 the loop is the composition of a tuple T of simple
loops. Let L be the set of distinct loops occurring in T , and for all ρ ∈ L, let cρ be the number of times ρ occurs in T . Since
in the computation of the difference vector of a path it does notmatter the order in which the edges are considered, we have∑

ρ∈L cρ · diff (ρ) = diff (σ ) = 0. Finally, since the loops in L come from the decomposition of a single loop σ , we have that
L is overlapping.

[If] Let L = {σ1, . . . , σl} be such that
∑l

i=1 ci · diff (σi) = 0. We construct a single loop σ such that diff (σ ) =∑l
i=1 ci · diff (σi). The construction proceeds in iterative steps, building a sequence of intermediate paths ρ1, . . . , ρl, such

that ρl is the wanted perfectly balanced loop. In the first step, we take any loop σi1 ∈ L and traverse it ci1 times, obtaining
the first intermediate path ρ1 = σ

ci1
i1

. After the jth step, since L is overlapping, there must be a loop σij+1 ∈ L that is
overlapping with one of the loops in the current intermediate path ρj, say in node v. Then, we reorder ρj in such a way that

it starts and ends in v. Let ρ ′j be such reordering, we set ρj+1 = ρ ′j σ
cij+1
ij+1

. One can verify that ρl is perfectly balanced. �

The following theorem is a direct consequence of the previous two lemmas.
Theorem 2. A graph G satisfies the bounded-difference problem iff there exists an overlapping set of simple loops of G having an
n.l.c. with difference value 0.

4.2. Frequency-f characterization

In the following, by MT , we denote the transpose of the matrix M and, by Mi,j, the element of M at its ith row and
jth column. The main purpose of this section is to prove the following loop-based characterization for the existence of
frequency-f paths.
Theorem 3. A graph G satisfies the frequency-f problem iff there exists a connected set L of simple loops having an n.l.c. with
frequency f .



166 A. Bianco et al. / Theoretical Computer Science 413 (2012) 160–175

We start the proof with two preliminary lemmas and then we separately prove the two directions of the above theorem,
represented by Lemmas 6 and 7.

Lemma 5. Given a vector f ∈ Qk, let L be a finite set of loops having no n.l.c. with frequency f . Moreover, let {ρn}n be an
infinite sequence of elements of L, x(n, a) =

∑n
i=0 ‖ρi‖a, and l(n) =

∑n
i=0 |ρi|. Then, there exists a color a∗ ∈ [k] such that

limn→+∞
x(n,a∗)
l(n) ≠ fa∗ .

Proof. Let L = {σ1, . . . , σm} and let g : Rm
→ R+ be defined by g(c1, . . . , cm) = maxa∈[k]

∑m
n=1 cn‖σn‖a∑m
n=1 cn|σn|

− fa
. First,

note that g is a continuous function, since it is the maximum of continuous functions. Let K ⊂ Rm be the set {(c1, . . . , cm) ∈
[0, 1]m |

∑m
i=1 ci = 1}. By Weierstrass theorem, g admits a minimum M = minx∈K {g(x)} on K . We show that M > 0.

Indeed, if by contradictionM = 0, there would be a vector (c1, . . . , cm) ∈ K such that for all a ∈ [k],
m−

n=1

cn‖σn‖a − fa
m−

n=1

cn|σn| = M = 0.

Since the above linear equality has a (non-negative) solution and contains only rational coefficients, it also has a (non-
negative) rational solution. Since it is homogeneous, it also admits a non-negative integer solution with at least one positive
component. This solution induces an n.l.c. of L with frequency f , contradicting the hypotheses.

Now, let δi,j be the number of times for which the loop σi occurs among the first j elements of the sequence {ρn}n
and let ci,j = δi,j/j. Since we have

∑m
i=1 δi,n = n, for all n ∈ N, it follows that (c1,n, . . . , cm,n) ∈ K . Moreover,

x(n, a) =
∑m

i=1 δi,n · ‖σi‖a = n ·
∑m

i=1 ci,n · ‖σi‖a and l(n) =
∑m

i=1 δi,n · |σi| = n ·
∑m

i=1 ci,n · |σi|.

For all n ∈ N, let Zn ∈ Rk be the vector defined by Zn,a =
∑m

i=1 ci,n‖σi‖a∑m
i=1 ci,n|σi|

− fa
. Since there is no n.l.c. of L with

frequency f , it holds that for all n ∈ N there exists a non-zero element in Zn. Let {an}n be a color sequence such that
Zn,an = maxa∈[k]{Zn,a} > 0. Since {an}n can assume at most k different values, there exists a color a∗ that occurs infinitely
often in {an}n. Let {ht}t be the index sequence such that aht = a∗ and there is no h ∈]ht , ht+1[with ah = a∗. Then, consider
the subsequence {Zht ,a∗}t of {Zn,a∗}n. It holds that limt→+∞ Zht ,a∗ ≥ M > 0 and consequently limn→+∞ Zn,a∗ ≠ 0, whenever

these limits exist. In conclusion, limn→+∞

∑m
i=1 ci,n‖σi‖a∗∑m
i=1 ci,n|σ |

= limn→+∞
x(n,a∗)
l(n) ≠ fa∗ . �

Lemma 6. Let G be a k-colored graph and ρ be an infinite path in G with color frequency f ∈ Qk, then there exists a connected
set of simple loops having an n.l.c. with frequency f .

Proof. Since ρ is an infinite path over a finite set of nodes, there exists a non-empty set V ′ of nodes through which the path
passes an infinite number of times. Then, there exists a constant m such that, for all n ≥ m, it holds that ρ(n) ∈ V ′. The
path π ∆

= ρ≥m has frequency f , since the frequency-f property is prefix independent. Let {σi}i be the quasi-segmentation
of π and, for all i ∈ N, let h(i) be the index in π of the node in which σi closes itself. So, each time a simple loop closes at
step h(n), π≤h(n) is composed of the n+ 1 simple loops σ0, . . . , σn closed so far, plus the rest rn. So, for all a ∈ [k], we have
‖π≤h(n)‖a = ‖rn‖a +

∑n
j=1 ‖σj‖a.

Let x(n, a) =
∑n

i=1 ‖σi‖a, y(n, a) = ‖π
≤h(n)
‖a, and l(n) =

∑n
i=1 |σi|. Since π has frequency f , we have limn→+∞

y(n,a)
h(n) =

fa. Since the rest is a simple path, it has length at most |V ′|, and we have that x(n, a) − |V ′| ≤ y(n, a) ≤ x(n, a) + |V ′|.
Hence, |x(n, a) − y(n, a)| ≤ |V ′| and y(n, a) − |V ′| ≤ x(n, a) ≤ y(n, a) + |V ′|. Moreover, h(n) = |rn| +

∑n
j=1 |σj|,

thus l(n) − |V ′| ≤ h(n) ≤ l(n) + |V ′|, so we have that h(n) − |V ′| ≤ l(n) ≤ h(n) + |V ′|. For all a ∈ [k], since
limn→+∞

y(n,a)
h(n) = fa, then limn→+∞

y(n,a)+|V ′|
h(n)−|V ′| = fa and limn→+∞

y(n,a)−|V ′|
h(n)+|V ′| = fa. Since for all n ∈ N such that h(n) > |V ′|

we have y(n,a)−|V ′|
h(n)+|V ′| ≤

x(n,a)
l(n) ≤

y(n,a)+|V ′|
h(n)−|V ′| , we have limn→+∞

x(n,a)
l(n) = fa. By Lemma 5, the set L of all simple loops in G has an

n.l.c. T with frequency f . Then, the simple loops of L which occur with a positive coefficient in T are connected, because
they are extracted from the same path π , and have an n.l.c. with frequency f . �

Lemma 7. If a k-colored graph G contains a set of connected simple loops having an n.l.c. with frequency f ∈ Qk, then there exists
in G an infinite path ρ with frequency f .

Proof. Let L = {σ0, . . . , σh−1}, and denote by vi the first node of σi in its representation as a cyclic sequence of nodes.
For all i = 0, . . . , h − 1, let πi be a (possibly empty) path starting in the last node of σi and ending in the first node of
σ(i+1)mod h. Since L is connected, it is possible to find such paths. Let (c0, c1, . . . , ch−1) be the non-negative integers such

that
∑h−1

i=0 ci‖σi‖∑h−1
i=0 ci|σi|

= f . We set Z =
∑h−1

i=0 ci‖σi‖. Let ni = |σi| and mi = |πi|, we set n =
∑h−1

i=0 ci · ni and m =
∑h−1

i=0 mi.

In order to construct a path with frequency f , we reason as follows. Since in general the loops in L do not share a node
with each other, to move from σi to σi+1, we have to pay a price, represented by the color vector of πi. In order to make
this price disappear in the long-run, we traverse the loops σi an increasing number of times: in the first round, we traverse
it ci times, in the second round, 2ci times, and so on. Formally, the construction is iterative and at every round i > 0 we
add a new cycle ρi to the path constructed so far, where ρi = σ

ic0
0 π0σ

ic1
1 π1 . . . σ

ich−1
h−1 πh−1. Notice that ρi starts and ends at
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Fig. 3. A 3-colored graph satisfying the balance problem, but not the bounded-difference problem.

node v0 and containsm+ i · n edges. The required infinite path is then ρ = ρ1ρ2 . . . ρi . . .. We now show that this path has
frequency f .

Let l0 = 0 and, for all i > 0, let li =
∑i

j=1 |ρj| =
∑i

j=1(m+ i ·n) = i ·m+ i·(i+1)
2 n = i2

2 n+O(i), so that ρ≤li = ρ1 . . . ρi. For

all colors a, it holds ‖ρ≤li‖a =
∑i

j=1 ‖ρj‖a =
∑i

j=1(
∑h−1

q=0 ‖πq‖a)+ i(
∑h−1

q=0 cq‖σq‖a) =
i2
2 · (

∑h−1
q=0 cq‖σq‖a)+ O(i). Consider

an index j ∈ N, there exists an index i(j) such li(j) ≤ j ≤ li(j)+1. Since for all colors a the functions ‖ρ≤j‖a and |ρ≤j| are

non-decreasing in j, we have that: ‖ρ
≤li(j)‖a

|ρ
≤li(j)+1 |

≤
‖ρ≤j‖a
|ρ≤j|
≤
‖ρ
≤li(j)+1‖a

|ρ
≤li(j) |

. Since limj→+∞
‖ρ
≤li(j)+1‖a

|ρ
≤li(j) |

=
(i+1)2·(

∑h−1
q=0 cq‖σq‖a)

i2·n
= fa, and

limj→+∞
‖ρ
≤li(j)‖a

|ρ
≤li(j)+1 |

= fa, we have limj→+∞
‖ρ≤j‖a
|ρ≤j|
= fa. �

Example 2. Consider the graph G in Fig. 3. First note that, up to rotation, there are just three simple loops in it: σ1 = A ·B ·A,
σ2 = C · D · E · F · C , and σ3 = A · B · C · D · E · A. It is easy to see that diff (σ1) = (1, 1), diff (σ2) = (−1,−1), and
diff (σ3) = (−1,−3). For all the three overlapping sets of loops ({σ1, σ3}, {σ2, σ3}, and {σ1, σ2, σ3}) there is noway to obtain
an n.l.c. with difference value 0 and all coefficients different from zero. So, by Theorem 2 there is no bounded-difference
path in G. On the other hand, since the connected set of simple loops {σ1, σ2} has an n.l.c. (with both coefficients equal to 1)
with frequency vector ( 13 ,

1
3 ,

1
3 ), by Lemma 7 we obtain that there is a balanced path in G. In particular, the balanced path

which is built in the proof of Lemma 7 is the subject of Example 1.

4.3. 2-colored graphs

In this section we prove that in the case of 2-colored graphs, the bounded-difference problem and the balance problem
coincide and we also introduce a faster algorithm for the solution of both problems.

When the graph G is 2-colored, the difference vector is simply a number. So, ifL is a connected set of simple loops having
an n.l.c. with difference value zero, then there must be either a perfectly balanced simple loop or two loops with difference
vectors of opposite sign. Note that two loops σ , σ ′ with color differences of opposite sign have the following n.l.c. with
difference value zero: |diff (σ ′)| · diff (σ ) + |diff (σ )| · diff (σ ′) = 0. If the two loops are connected but not overlapping,
we can construct a sequence of adjacent overlapping simple loops connecting them. In this way, we are always able to find
a perfectly balanced simple loop or two overlapping simple loops with difference vectors of opposite sign. Therefore, the
following holds.

Lemma 8. Let G be a 2-colored graph. If there is a connected set of simple loops of G having an n.l.c. with difference value zero,
then there is an overlapping set of simple loops of G having an n.l.c. with difference value zero.

Proof. In a 2-colored graph, the difference vector of any path ρ is simply an integer. Let L be a connected set of simple
loops having an n.l.c. with difference value zero. If L contains a simple loop σ such that diff (σ ) = 0, then {σ } is trivially an
overlapping set. If L contains no perfectly balanced simple loop, then it cannot be the case that all difference vectors of the
loops have the same sign, because then itwould not possible to have an n.l.c. with difference value zero. Thus, let diff (σ ) > 0
and diff (σ ′) < 0, for σ , σ ′ ∈ L. If σ and σ ′ are overlapping, then {σ , σ ′} is the overlapping set we are looking for. If σ and
σ ′ are not overlapping, since they are connected, there exist a path ρ1 from σ to σ ′ and a path ρ2 from σ ′ to σ . So, there exist
four indexes i, i′, j, j′ such that ρ1(i) is the last node of ρ1 in σ , ρ1(j) is the first node of ρ1 in σ ′, ρ2(i′) is the last node of ρ2 in
σ ′, and ρ2(j′) is the first node of ρ2 in σ . Then, within the loop σ there exists a simple path ρ from ρ2(j′) to ρ1(i) and, within
the loop σ ′, there exists a simple path ρ ′ from ρ1(j) to ρ2(i′). We then set ρ ′1 = ρ1(i) . . . ρ1(j) and ρ

′

2 = ρ2(i
′), . . . , ρ2(j′).

We observe that the pairs of paths (ρ, ρ ′1), (ρ
′, ρ ′1), (ρ

′, ρ ′2), and (ρ, ρ
′

2) have only one node in common. Moreover, ρ and
ρ ′ have no node in common since σ and σ ′ are not overlapping. So, the loop σ ′′ = ρρ ′1ρ

′ρ ′2 is not simple iff ρ ′1 and ρ ′2
have a node in common. Now, observe that for two loops π1 and π2 with difference vectors of opposite sign, the n.l.c. with
coefficients |diff (π2)| and |diff (π1)| has difference value zero, since |diff (π2)|diff (π1)+|diff (π1)|diff (π2) = 0.We conclude
with the following case analysis.

1. Assume σ ′′ is simple. Then (σ , σ ′′) and (σ ′, σ ′′) are pairs of overlapping loops. The desired overlapping set L′ of loops
having an n.l.c. with difference value 0 is defined by:

L′ =


{σ ′′} if diff (σ ′′) = 0
{σ ′, σ ′′} if diff (σ ′′) > 0
{σ , σ ′′} if diff (σ ′′) < 0.
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2. Assume ρ ′1 and ρ ′2 have nodes in common, i.e., there exist two indexes k, k′ such that ρ ′1(k) = ρ
′

2(k
′). We can construct

two loops σ ′1 = ρρ ′1(1) . . . ρ
′

1(k)ρ
′

2(k
′
+ 1) . . . ρ ′2(|ρ

′

2|) and σ
′

2 = ρ ′ρ ′2(1) . . . ρ
′

2(k
′)ρ ′1(k + 1) . . . ρ ′1(|ρ

′

1|). The desired
overlapping set L′ of loops having an n.l.c. with difference value 0 is defined by:

L′ =


{σ ′i } if diff (σ ′i ) = 0, for some i ∈ {0, 1}
{σ ′, σ ′2} if diff (σ ′2) > 0
{σ , σ ′1} if diff (σ ′1) < 0
{σ ′1, σ

′

2} if diff (σ ′1) > 0 and diff (σ ′2) < 0. �

A 2-colored graph can be represented as a weighted graph, where color 0 is replaced by weight 1 and color 1 by weight
−1. In this framework, a loop is said to be null (resp., positive, negative) if the sum of the values of its weights is zero (resp.,
positive, negative). Observe that a null (resp. positive, negative) loop contains the same number of occurrences of the two
colors (resp. more occurrences of color 0, more occurrences of color 1). Due to the characterization of Lemma 8, the decision
problems have an affirmative answer if and only if there exists a null loop or two connected loops of opposite sign. Hence
the decision problems can be solved efficiently, as proved by the following result.
Theorem 4. A 2-colored graph G = (V , E) satisfies the bounded-difference problem iff it satisfies the balance problem. Both
problems can be solved in time O(|V | · |E|).
Proof. The equivalence between the bounded and the balanced problem in a 2-colored graph is direct consequence of
Theorem 2, Lemma 8, and, finally, Theorem 3.

In order to solve the problems, we convert the colored graph into a weighted graph, as explained above. Then, we check
whether there exists a null simple loop in the graph. To this purpose, from the weighted graph G = (V , E), we build an
enlarged graph by equipping each node with a bounded counter x, which keeps track of the accumulated weight. Due to the
fact that we are looking for null simple loops, it is enough to consider x ∈ {−⌊|V |/2⌋, . . . , ⌊|V |/2⌋}, since the maximum
absolute weight accumulated in such a loop is ⌊|V |/2⌋. Formally, G′ = (V ′, E ′), where V ′ = V × {−⌊|V |/2⌋, . . . , ⌊|V |/2⌋}
and, for all (u, x), (v, y) ∈ V ′, it holds that ((u, x), (v, y)) ∈ E ′ iff (u, w, v) ∈ E and y = x + w (where w ∈ {−1, 1} is the
weight of the edge). It is easy to see that the following holds: (i) if a node v ∈ V is part of a perfectly balanced simple loop,
there is a non-trivial path in G′ from (v, 0) to itself; (ii) if there is a non-trivial path in G′ from (v, 0) to itself, the node v ∈ V
is part of a perfectly balanced loop. Now, we use a depth-first search to find a loop from (v, 0) to itself, for each v ∈ V . If
such a loop exists, in G there is a null loop containing v and the answer to both decision problems is affirmative. If there is
no such loop for any v ∈ V , we proceed to the next phase.

At this point, we decompose the graph in its strongly connected components, by using Tarjan’s algorithm in time
O(|V | + |E|). Then, on each of these components, we apply the Bellman–Ford algorithm for both maximum and minimum
single-source paths, starting at any node. The two executions of the Bellman–Ford algorithm find, respectively, a positive
and negative loop if they exist. If there is a component for which both searches succeed then the balance and bounded-
difference problems are solved with a positive answer. Otherwise, the problems are solved with negative answer, since we
are sure that there is no way to build a perfectly balanced loop.

Each run of the Bellman–Ford algorithm takes time O(|V ′′| · |E ′′|), where (V ′′, E ′′) is a connected component. So, if S is
the set of connected components, we have that the whole algorithm runs in time O(|V | + |E| +

∑
(V ′′,E′′)∈S |V

′′
| · |E ′′|) ∈

O(
∑

(V ′′,E′′)∈S |V
′′
| · |E|) = O(|E|

∑
(V ′′,E′′)∈S |V

′′
|) = O(|E| · |V |). �

5. From graphs to linear systems

In this section, we solve in polynomial time the bounded-difference and the frequency-f problem for a rational f , by
reducing them to the feasibility of a linear system. The linear system for the frequency-f problem is used as a component for
the linear system for the bounded-difference problem. So, for ease of reading, we introduce the solution of the frequency-f
problem first.

5.1. Frequency-f linear system

Definition 1. Let G = (V , E) be a k-colored graph, and f ∈ Qk a vector of rationals. We call frequency-f system for G the
following system of equations on the set of variables {xe | e ∈ E}.

1. for all v ∈ V
∑

e∈v← xe =
∑

e∈v→ xe
2. for all a ∈ [k]

∑
e∈E(a) xe = fa

∑
e∈E xe

3. for all e ∈ E xe ≥ 0
4.

∑
e∈E xe > 0.

If all components of f are equal to 1
k , we call the above system the balance system for G.

Let m = |E| and n = |V |, the frequency-f system has m variables and m + n + k + 1 constraints. It helps to think of each
variable xe as a load associated to the edge e ∈ E, and of each constraint as having the following meaning.
1. For each node, the entering load is equal to the exiting load.
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2. For all colors a ∈ [k], the total load on the edges colored by a is equal to fa times the whole load.
3. Every load is non-negative.
4. The total load is positive.

We prove that the frequency-f problem is equivalent to the feasibility of the previous linear system through the following
auxiliary theorem.

Lemma 9. Given a graph G = (V , E), there exists a vector x : E → N such that for each node v ∈ V it holds
∑

e∈v← xe =∑
e∈v→ xe if and only if there exists a sequence of simple loops T = σ1, . . . , σl such that xe =

∑l
i=1 |σi|e.

Proof (If). Let T = σ1, . . . , σl be a sequence of simple loops and let xe =
∑l

i=1 |σi|e. Consider a node v ∈ V , and let
yv,i ∈ {0, 1} be a value indicating whether the node v occurs in σi. Precisely yv,i = 1 if and only if the loop σi passes through
v. Since each loop passing through v contains only one edge entering in v and only one edge exiting from v, and since a loop
non-passing through v contains none of the above, we have for each v,

∑
e∈v→ xe =

∑l
i=1 yv,i =

∑
e∈v← xe.

[Only if] Let x : E → N be a vector such that
∑

e∈v← xe =
∑

e∈v→ xe for all v ∈ V . We propose an algorithm that computes
a sequence of simple loops T = σ1, . . . , σl such that xe =

∑l
i=1 |σi|e. The algorithm is recursive on the value of the sum∑

e∈E xe.

1. For the base case, if
∑

e∈E xe = 0 then the empty sequence is the sought sequence of loops.
2. Let

∑
e∈E xe > 0. In the recursive step we construct a simple loop ρ and we remove the edges used by this loop from

the vector x, thus obtaining a residual vector ye = xe − |ρ|e with a lower sum. Notice that since ρ is a simple loop, the
residual vector satisfies

∑
e∈v← ye =

∑
e∈v→ ye for all v ∈ V . The construction is iterative and proceeds as follows:

(a) In the first step we choose any edge e′ such that xe′ > 0 and we set ρ = e′. At this point ρ may already be a loop, in
which case the iteration ends. Otherwise, we repeatedly apply the next step.

(b) Consider the simple path ρ built so far. Let v be the last node in ρ: in ρ there is only one entering edge in v and no
exiting edges. Hence, 0 ≤

∑
e∈v← ye = (

∑
e∈v← xe) − 1 = (

∑
e∈v→ xe) − 1 = (

∑
e∈v→ ye) − 1. This implies that∑

e∈v→ ye > 0, hence we can find e′ ∈ v→ such that ye′ > 0. Then, update ρ by adding the edge e′ at the end. At this
point if ρ is a loop the iteration ends, otherwise another iteration of this step is performed.

(c) Eventually, within |V | steps, the path ρ becomes a simple loop. As a consequence, for the residual vector y defined
above, it holds

∑
e∈v← ye =

∑
e∈v→ ye.

At the end of the iteration we have a simple loop ρ and a residual vector y such that
∑

e∈E ye <
∑

e∈E xe and
∑

e∈v→ ye =∑
e∈v← ye for all v ∈ V . We can apply the recursive algorithm to the vector y and the sought sequence of simple loops is

obtained by collecting the paths ρ generated along the way. �

Lemma 10. There exists a set of simple loops in G with an n.l.c. of frequency f iff the frequency-f system for G is feasible.

Proof (Only if). Assume thatL is a set of simple loops having an n.l.c. of frequency f . Let cσ be the coefficient associatedwith
the loop σ ∈ L. We can construct a vector x : E → N that satisfies the frequency-f system: xe =

∑
σ∈L cσ |σ |e =

∑l
i=1 |σi|e.

Let T = σ1, . . . , σl be a sequence of loops obtained by repeating cσ times each loop σ in L, in arbitrary order. By
Lemma 9, x satisfies the first set of constraints of the frequency-f system. The third, fourth and fifth sets are trivially
satisfied. For the second set we need to observe that the value

∑
e∈E(a) xe is the sum of edges colored by a color a ∈ [k]:∑

e∈E(a) xe =
∑

e∈E(a)
∑

σ∈L cσ |σ |e =
∑

σ∈L cσ
∑

e∈E(a) |σ |e =
∑

σ∈L cσ |σ |a. Due to the natural linear combination of
frequency f we have that for all a ∈ [k − 1] it holds that

∑
σ∈L cσ |σ |a = fa ·

∑
σ∈L cσ |σ |, and, hence, the second set of

constraints holds.
[If] If the frequency-f system is feasible, since it has integer coefficients, it has a rational solution x : E → N. By Lemma 9,

we can construct a sequence of simple loops T = σ1, . . . , σl such that
∑l

i=1 |σi|e = xe for all edges e ∈ E. Let L be the set
of these loops and for each σ ∈ L let cσ be the number of times σ appears in T . Then xe =

∑
σ∈L cσ |σ |e. Due to the second

set of constraints, and due to the fact that
∑

e∈E(a) xe =
∑

σ∈L cσ |σ |a for all colors a ∈ [k], we have that the natural linear
combination of L with coefficients cσ for each σ ∈ L has frequency f . �

The following theorem is an immediate corollary of Theorem 3 and Lemma 10.

Lemma 11. In a graph G, there exists an infinite path with frequency f iff the frequency-f system for G is feasible.

Since the feasibility problem for a system of linear equations is solvable in polynomial time in the size of the system (number
of constraints and size of the coefficients) [17], we obtain the following.

Theorem 5. The frequency-f problem is in PTIME.

Moreover, following the procedure in the [If] proof of Lemma 10 and in the proof of Lemma 7, it is possible to build in
polynomial time, from a solution of the linear system, a finite representation of a path in the graph satisfying the frequency-
f property.
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5.2. Bounded-difference linear system

Definition 2. Let G = (V , E) be a k-colored graph with m = |E|, n = |V |, and sG = min{2n+ k− 1, n+m}. Let u ∈ V be a
node. We call bounded-difference system for (G, u) the following system of equations on the set of variables {xe, ye | e ∈ E}.

1-4. The same constraints as in the balance system for G
5. for all v ∈ V \ {u}

∑
e∈v← ye −

∑
e∈v→ ye =

∑
e∈v→ xe

6.
∑

e∈u→ ye −
∑

e∈u← ye =
∑

v∈V\{u}
∑

e∈v→ xe
7. for all e ∈ E ye ≥ 0
8. for all e ∈ E ye ≤ (m · sG!)xe.

The bounded-difference system has 2m variables and 3m+ 2n+ k constraints. It helps to think of the vectors x and y as two
loads associated to the edges of G. The constraints 1–4 are the same ones used for the balance problem for G and require that
x represents a set of simple loops of G having an n.l.c of difference value zero. The constraints 5–8 are connection constraints,
asking that y represents a connection load, from u to every other node of the simple loops defined by x and carried only on
the edges of those loops. Thus, constraints 5–8 ask that the loops represented by x are overlapping, because of Lemma 1.

5 Each node v ∈ V \ {u} absorbs an amount of y-load equal to the amount of x-load traversing it. These constraints ensure
that the nodes belonging to the x-solution receive a positive y-load.

6 Node u generates as much y-load as the total x-load on all edges, except the edges exiting from u.
7 Every y-load is non-negative.
8 If the x-load on an edge is zero, then the y-load on that edge is also zero. Otherwise, the y-load can be at most m · sG!

times the x-load. More details on the choice of this multiplicative constant follow.

In Lemma 12, we show that if there is a solution x of the balance system, then there is another solution x′ whose non-zero
components are greater than or equal to 1 and less than or equal to sG!, so that

∑
e∈E x

′
e ≤ m · sG!. In this way, the constraints

(8) allow each edge that has a positive x-load to carry as its y-load all the y-load exiting from u.

Lemma 12. Let G = (V , E) be a k-colored graph,with |V | = n, |E| = m, and sG = min{2n+k−1, n+m}. For all solutions x to the
balance system for G there exists a solution x′ such that, for all e ∈ E, it holds (xe = 0⇒ x′e = 0) and (xe > 0⇒ 1 ≤ x′e ≤ sG!).
As a consequence, 1 ≤

∑
e∈E x

′
e ≤ m · sG!.

In order to prove Lemma 12, we first introduce two preliminary results.

Lemma 13. Let t ∈ N be a natural number and A ∈ [t]m×m0 be a square matrix, then |det(A)| ≤ tmm!. Moreover, if A is not
singular then | det(A)| ≥ 1.

Proof. We prove the first statement by induction on m. If m = 1 then | det(A)| = |a1,1| ≤ t . If the statement holds for
m − 1, then for any j ∈ [m] it holds that det(A) =

∑m
i=1(−1)

i+jai,j det(Mi,j), where Mi,j ∈ [t]
(m−1)×(m−1)
0 is a matrix

obtained from A by removing the ith row and the jth column. So, | det(A)| ≤ |
∑m

i=1 ai,j det(Mi,j)| ≤
∑m

i=1 |ai,j|| det(Mi,j)| ≤∑m
i=1 t · t

m−1(m− 1)! = (tm)tm−1(m− 1)! = tmm!.
For the second statement, note that if A is not singular, since A has an integer determinant it must be | det(A)| ≥ 1. �

Lemma 14. Let t be a natural number and A ∈ [t]n×m0 , A′ ∈ [t]n
′
×m

0 , b ∈ [t]n×10 , and b′ ∈ [t]n
′
×1

0 be four matrices. Let S =
{x ∈ Rm

| Ax ≥ b, A′x ≥ b′, x ≥ 0} and M = min{n + n′, n + m}. If S is not empty, then there exists a vector x ∈ S such that
x ∈ Qm and every component xi is less than or equal to k = M!tM .

Proof. Let I ∈ Nn×n be the identity matrix. First, we convert every inequality of the system Ax ≥ B in an equivalent
equality by adding a new variable: the inequality

∑m
j=1 ai,jxj ≥ bi becomes

∑m
j=1 ai,jxj = bi + yi with yi ≥ 0. If we set

C =
 A −I
A′ 0


∈ R(n+n

′)×(n+m), and d =


b
b′


, we can define the set S ′ = {(x, y) ∈ Rm+n

| C · (x, y)T = d, (x, y) ≥ 0}. It is
easy to see that S = {x ∈ Rm

| ∃y ∈ Rn . (x, y) ∈ S ′}, thus in our hypothesis S ′ is not empty. Let r be the rank of C , we have
that m ≤ r ≤ M , since −I is not singular. By a well known result in linear programming (see, for instance, Theorem 3.5
of [17]), the set S ′ contains a basic solution, i.e., there exists a non-singular submatrix C ′ ∈ Rr×r of C , given by the columns
i1, . . . , ir and by the rows j1, . . . , jr of C , such that in S there is the point (z1, . . . , zm+n) ∈ Rm+n such that z ′ = (zi1 , . . . , zir )
is the unique solution to the system C ′z ′ = (dj1 , . . . , djr )

T
= d′, and for all j ∉ {i1, . . . , ir} it holds that zj = 0. By Cramer’s

theorem, for all k ∈ [r] we have that zik = det(C ′ik)/ det(C
′) where C ′ik is the matrix obtained from C ′ by replacing the ikth

column with the vector d′. So, z ′ and z have components in Q. Since C ′, C ′i1 , . . . , C
′

ir ∈ [t]
r×r
0 , by Lemma 13, | det(Ci)| ≤ r!t r .

Moreover, since C ′ is not singular, we have | det(C ′)| ≥ 1. In conclusion, zik = | det(Ci)|/| det(C ′)| ≤ (r)!t r ≤ M!tM , as
requested. �

Now, we are ready to prove Lemma 12.
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Proof. Let x be a solution to the balance system for G, and let P (for positive) be the set of all edges e such that xe > 0. By
construction, P is not empty. We represent the first two sets of equalities of the balance system in matrix form as Dx = 0.
Then, the set of points satisfying the balance system is Y = {y ∈ Rm

| Dy = 0, y ≥ 0,
∑

e∈E ye > 0}. Now the subset of Y ,
Y ′ = {y ∈ Y | ∀e ∈ P : ye ≥ 1 and ∀e ∉ I : ye = 0} = {y ∈ Y | ∀e ∈ E . (xe > 0 ⇒ ye > 1) and (xe = 0 ⇒ ye = 0)}
is not empty. Indeed, the vector z = x(mine∈P xe)−1 is in Y ′, since (i) Dz = (mine∈P xe)−1Dx = 0, (ii) for all e ∈ P , we have
ze = xe(mine∈P xe)−1 ≥ 1, and (iii) for all e ∉ P , we have ze = 0.

The set of inequalities ‘‘∀e ∈ P : ye ≥ 1’’ can be represented as the system of linear equations Fy ≥ 1, with
1 ∈ {1}l×1. Similarly, the set of equalities ‘‘∀e ∉ P : ye = 0’’ can be represented as F ′y = 0. If we define D′ =


D
F ′


∈

{−1, 0, 1}(2n+k−l−1)×m, we have Y ′ = {y ∈ Rm
| D′y = 0, Fy ≥ 1}. Since D′, F , 1, 0 all have elements in {−1, 0, 1}, by

Lemma14,Y contains an element x′ ∈ Qm such that for all i ∈ [m], x′i ≤ (min{2n+k−1, l+m})! ≤ (min{2n+k−1, n+m})! =
sG!, which concludes the proof. �

The following lemma states that the bounded-difference system can be used to solve the bounded-difference problem.

Lemma 15. There exists an overlapping set of simple loops in G, passing through a node u and having an n.l.c. of difference value
0 iff the bounded-difference system for (G, u) is feasible.

Proof (Only if). Let L be an overlapping set of simple loops having an n.l.c. of difference value 0. Let cσ be the coefficient
associatedwith the loop σ ∈ L in such linear combination.We start by constructing a solution x ∈ Rm to the balance system
as follows. Define h(e, σ ) ∈ {0, 1} as 1 if the edge e belongs to the loop σ , and 0 otherwise.We set xe =

∑
σ∈L cσh(e, σ ). We

have that x is a solution to the balance system forG, or equivalently that it satisfies constraints 1–4 of the bounded-difference
system for (G, u). By Lemma 12, there exists another solution x′ ∈ Rm to the balance system, such that xe = 0 ⇒ x′e = 0
and xe > 0⇒ 1 ≤ x′e ≤ sG!. If any loop of the overlapping set L passes through u, by Lemma 1, there exists a path ρv from
u to any node v occurring in L. We set ye =

∑
v∈V ′\{u}(h(e, ρv)

∑
e∈v→ x′e). Simple calculations show that (x′, y) is a solution

to the bounded-difference system for (G, u).
[If] If there exists a vector (x, y) ∈ R2m satisfying the bounded-difference system, then like we did in the second part of

Lemma 10, using x, we can construct a set of simple loops L having an n.l.c. of frequency f with all components equal to 1
k .

Since all colors occur the same number of times in the n.l.c. ( 1k times the number of edges in the n.l.c.), such an n.l.c. has also
difference value equal to 0. Since

∑
e∈u→ ye −

∑
e∈u← ye =

∑
v∈V\{u}

∑
e∈v→ xe, we have that u belongs to at least one edge

used in the construction ofL. If we set G′ = (V ′, E ′) as the subgraph of G induced byL, we are able to show by contradiction
that there is a path in G′ from u to every other node of V ′. Indeed, if for some v ∈ V ′ \ {u} there is no path in G′ from u to v,
then there is some load exiting from u that cannot reach its destination using only edges of G′. Since the constraints 8 make
it impossible to carry load on edges of G that are not used in L, the connection constraints cannot be satisfied. So, for all
v ∈ V ′ there is a path in G′ from u to v. By Lemma 1, L is overlapping. �

In order to solve the bounded-difference problem for G, for all u ∈ V we check whether the bounded-difference
system for (G, u) is feasible, by using a polynomial-time algorithm for feasibility of linear systems [17]. This algorithm
is used at most n times and it is polynomial in the number of constraints (2n + 3m + k) and in the logarithm of the
maximum modulus M of a coefficient in a constraint. In our case, M = m · sG!. Using Stirling’s approximation, we have
log(m · sG!) = log(m)+Θ(sG log(sG)). Therefore, we obtain the following.

Theorem 6. The bounded-difference problem is in PTIME.

6. The perfectly balanced finite path problem

In this section, we introduce an NP-hard problem similar to the bounded-difference problem. Given a k-colored graph
G and two nodes u and v, the new problem asks whether there exists a perfectly balanced path from u to v. We call this
question the perfectly balanced finite path problem. To see that this problem is closely related to the bounded-difference
problem, one can note that it corresponds to the statement of item 3 in Lemma 3, by changing the word loop to finite path.
In the following we prove that such a problem is NP-complete.

Theorem 7. The perfectly balanced finite path problem is NP-hard.

Proof. We prove the statement by a reduction from 3SAT which is known to be NP-hard [6].
Given a 3SAT formula ϕ on n variables x1, . . . , xn with k clauses C1, . . . , Ck, we construct a k-colored graph G such that

each color i is associated with the clause Ci. Precisely, for each variable xj, we construct a subgraph Gj of G with a starting
node qj and an ending node qj+1, as shown in Fig. 4. For 1 ≤ j ≤ n, the labels aj,1, . . . , aj,kj are the colors corresponding to
the clauses in which xj occurs affirmed and a′j,1, . . . , a

′

j,k′j
are the colors of the clauses in which xj occurs negated. Moreover,

the uncolored edges (those leaving from qj and those entering qj+1) concisely represent a sequence of k edges, each labeled
with a different color. Finally, the graph G is obtained by concatenating each graph Gj with Gj+1, as they share the node qj+1,
for 1 ≤ j < n.

We show that the formula ϕ is satisfiable iff there exists a perfectly balanced path in G from q1 to qn+1.
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Fig. 4. Proof of Theorem 7: The jth subgraph Gj of G.

First, assume that ϕ is satisfiable. Then, there exists a truth assignment for the variables that satisfies ϕ. Using this
assignment, we construct a perfectly balanced path in which each color appears exactly 2n + 3 times. In particular, for
all subgraphs Gj, the path takes the upper branch if xj is assigned true and the lower branch otherwise. For each clause Ci, let
Li be the indexes of the variables that render Ci true, under the given truth assignment. We obtain that the constructed path
passes through at least 2n + |Li| non-self-loop edges colored with i. This holds because at each subgraph it passes through
the uncolored edges once at the beginning and once at the end. Moreover, for all j ∈ Li, the path passes through another
non-self-loop edge labeled with i in Gj. Since |Li| ≥ 1, the path may pass through a self-loop labeled with i at least once in
the graph. Thus, by taking 3 − |Li| times one of those self-loops, we get the desired number 2n + 3 of occurrences of i, for
all colors i.

Conversely, assume that there exists a perfectly balanced path from q0 to qn+1. For all subgraphs Gj the path takes either
the upper or the lower branch. Then, there are two possible situations:
1. Each color occurs 2n + l times with l ≥ 1. We define the assignment in the following way: we set xj to true if the path

takes the upper branch in the subgraph Gj, and to false otherwise.We claim that such assignment satisfies ϕ. For all colors
i the path passes through an i-colored edge α such that it is not a self-loop and it is not a starting or an ending edge of a
subgraph Gj (those edges are the first 2n). Such edge α is on a branch of a subgraph Gj, consequently the assignment for
xj satisfies the clause Ci. Being i arbitrary, all clauses Ci are satisfied by the assignment of the variable.

2. Each color occurs 2n times in the path. We define the assignment as follows: we set xj to true if the path takes the
lower branch in Gj, and to false otherwise. We claim that such assignment satisfies ϕ. For all colors i there exists at least
one variable xj appearing in the clause Ci. However, the path does not pass through any edge colored with i, except the
mandatory edges at the beginning and end of each Gj. Then, in Gj the path takes the branch opposite to the assignment
of xj that makes Ci true Then, the opposite assignment of xj (the one we choose) makes Ci true. �

We recall a result of integer programming presented in [19].
Lemma 16 ([19]). Let A ∈ Zn×n, B ∈ Zn×1, and S = {x ∈ Zn

| Ax ≤ B}. If S is not empty then there exists a point x ∈ S such
that the sum of the components of x is bounded by 6n3ϕ, where ϕ is the maximum sum of the coefficients of an inequality of the
system Ax ≤ B.

Definition 3. Let G = (V , E) be a k-colored graph and u, w ∈ V be two distinct nodes.We call perfectly balanced path system
for (G, u, w) the following system of equations on the set of variables {xe, ye | e ∈ E}.

1. for all v ∈ V \ {u, w}
∑

e∈v→ xe =
∑

e∈v← xe
2.

∑
e∈u→ xe = 1+

∑
e∈u← xe

3.
∑

e∈w→ xe = −1+
∑

e∈w← xe
4. for all a ∈ [k− 1]

∑
e∈E(a) xe =

∑
e∈E(k) xe

5. for all e ∈ E xe ≥ 0
6. for all v ∈ V \ {u}

∑
e∈v← ye −

∑
e∈v→ ye =

∑
e∈v→ xe

7.
∑

e∈u→ ye −
∑

e∈u← ye =
∑

v∈V\{u}
∑

e∈v→ xe
8. for all e ∈ E ye ≥ 0
9. for all e ∈ E ye ≤ (6(d− 1)3ϕ)xe
10. for all e ∈ E xe, ye ∈ Z.

where ϕ is the maximum sum of the coefficients of any inequality in the first six sets of constraints.

Letm = |E| and n = |V |, the perfectly balanced path system has 2m variables and 3m+ 2n+ k constraints. It helps to think
of the vectors x and y as two integer loads associated to the edges of G. The constraints 1–5 for G, and they ask that x should
represent a path from u tow and a set of simple loops such that the latter has an n.l.c. whose difference value is the opposite
of the difference vector of the path (constraint 4). Without constraints 6–9, the simple loops could be disconnected from the
path from u tow.

The constraints 6–9 are connection constraints, asking that y should represent a connection load, from u to every other
node of the simple loops defined by x, and carried only on the edges of those loops. Thus, the constraints 6–9 ask that the
loops represented by x should be reachable from u, using only edges represented by x, similarly to the bounded-difference
system of Section 5. The only difference is the bound in the constraints 9, which is justified by Lemma 16. Observe that
Lemma 16 is applicable to the constraints 1–5 that define x.
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Lemma 17. There exists a perfectly balanced path in G from u tow iff the perfectly balanced path system (G, u, w) is feasible.

The proof of the previous lemma is similar to the proof of Lemma 15. Since the feasibility problem for an integer linear
system is in NP, and by Theorem 7, we obtain the following.

Theorem 8. The perfectly balanced finite path problem is NP-complete.

7. Colored games with frequency goals

In this section, we study k-colored games having one of the following goals.

• The bounded-difference goal Wbn, containing all and only the bounded-difference color sequences.
• Let f ∈ Qk be such that

∑k
a=1 fa = 1 and fa ≥ 0 for all a ∈ [k]. The frequency-f goal Wf , containing all and only the color

sequences with color frequency vector f .
• The balance goal Wbl, containing all and only the balanced color sequences (i.e. with frequency vector with all equal

components).

7.1. Co-NP membership

We prove that the problem of deciding whether there exists a winning strategy for player 0 in the games defined above
is in Co-NP.

Lemma 18. Wbn, Wbl, and Wf are convex.

Proof. Let y, z ∈ [k]ω and x ∈ y⊗ z. We prove that if y and z are both balanced (resp., bounded-difference, or frequency-f ),
then so is x. We have that x = x1 . . . xi . . . where y = x1x3 . . . x2k+1 . . . and z = x2x4 . . . x2k . . ., with xi ∈ [k]∗ for all i. Also,
for all n ∈ N there are two indexes ny, nz such that n = ny + nz and diff a,b(x≤n) = diff a,b(y≤ny) + diff a,b(z≤nz ), for all
a, b ∈ [k]. Precisely, if n = |x1| + |x2| + · · · + |xk−1| + t , with t ∈ N, then x≤n = x1x2 . . . x

≤t
k and, if k is even, we have

ny = |x1|+ |x3|+ · · ·+ |xk−1| and nz = |x2|+ |x4|+ · · ·+ |xk−2|+ t , otherwise we obtain ny = |x1|+ |x3|+ · · ·+ |xk−2|+ t
and nz = |x2| + |x4| + · · · + |xk−1|. We now distinguish the following cases.

1. (bounded-difference) Since y and z are bounded-difference, there exist two constants Cy, Cz ∈ N such that for all a, b ∈ [k]
and for all n > 0, |diff a,b(y≤n)| < Cy and |diff a,b(z≤n)| < Cz . Therefore, let Cx = Cy + Cz , for all a, b ∈ [k] and n ∈ N we
have |diff a,b(x≤n)| ≤ |diff a,b(y≤ny)| + |diff a,b(z≤ny)| ≤ Cx. Hence, the sequence x is bounded-difference.

2. (frequency-f ) Given that y and z have frequency f , we have that, for all a ∈ [k] and for all ε > 0, there exists h(ε) > 0
such that for all n > h(ε), it holds that

 ‖y≤n‖a
n − fa

 ≤ ε and  ‖z≤n‖a
n − fa

 ≤ ε. Hence, given ε > 0, let n > 0 be such that
ny ≥ h(ε/2) and nz ≥ h(ε/2). Such n exists, due to the definition of the shuffle operation. For all n′ > n we have that: ‖x≤n′‖an′ − fa

 =  ‖y≤n′y‖a+‖z≤n′z ‖a−(n′y+n′z )fan′y+n′z

 ≤  ‖y≤n′y‖a−n′y·fan′y+n′z

 +  ‖z≤n′z ‖a−n′z ·fan′y+n′z

 ≤  ‖y≤n′y‖an′y
− fa

 +  ‖z≤n′z ‖an′z
− fa

 ≤ ε. So, the
color sequence x has frequency vector f .

3. (balanced) Since the balance property is equivalent to the frequency-f property with fa equal to 1/k for all colors a ∈ [k],
the thesis holds. �

Now, we can apply Theorem 1 to our goals and obtain the following.

Corollary 1. Let G be a k-colored game with balance, bounded-difference, or frequency-f goal. The game is determined. Moreover
if player 1 has a winning strategy, he has a memoryless winning strategy.

The fact that memoryless strategies suffice for player 1 easily leads to the following result.

Lemma 19. Given a k-colored game with balanced, bounded-difference, or frequency-f goal, the problem asking whether there
exists a winning strategy for player 1 is in NP, the problem asking whether there exists a winning strategy for player 0 is in Co-NP.

Proof. By Corollary 1, if player 1 has a winning strategy, he has a memoryless one. The number of memoryless strategies
is finite and each one of them can be represented in polynomial space in the size of the problem. So, in polynomial time
we can guess a memoryless strategy τ , and verify that it is a winning strategy, using the following algorithm. We construct
the sub-arena A′, obtained from A by removing all the edges of player 1 that are not used by τ . We have that τ is a winning
strategy for player 1 in A iff all the plays on A′ are winning for player 1. Thus, player 0 is able to construct a balanced (resp.,
bounded-difference, frequency-f ) path iff there exists a balanced (resp., bounded-difference, frequency-f ) path in the graph
of A′ and this path is reachable from vini. So, we construct the subgraph A′′ of A′, obtained by removing all the nodes that are
not reachable from vini. In order to check if there exists a balanced (resp., bounded-difference, frequency-f ) path reachable
from vini, it is sufficient to apply the polynomial-time algorithms presented in Section 5.

This concludes the proof that the problem of asking whether there exists a winning strategy for player 1 is in NP. Hence,
the complementary problem asking whether there exists a winning strategy for player 0 is in Co-NP. �
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Fig. 5. The jth subgraph Aj of A. The dotted edge from vj,i to vj,i+1 is present iff ψi ∈ ψ(xj), and analogously for the lower branch.

7.2. Co-NP hardness

Lemma 20. Given a Boolean formula ψ in conjunctive normal form, there exists a k-colored arena A such that the following are
equivalent (i) ψ is a tautology, (ii) there exists a winning strategy for player 0 in the game G = (A,Wbl), and (iii) there exists a
winning strategy for player 0 in the game G′ = (A,Wbn).

Proof. Letm be the number of clauses ofψ and n be the number of its variables, thenwe canwriteψ = ∧m
i=1ψi, where each

ψi is a disjunction of literals. In the following we define ψ(x) as the set of all clauses in which x appears in positive form,
and ψ(x) as the set of all clauses in which x appears negated.

We construct the following (m+ 1)-colored arena A = (V0, V1, vini, E), where the set of colors corresponds to the set of
clauses ofψ with the added control colorm+ 1. The description of the arena Amakes use of uncolored edges, i.e., edges not
labeled by any color. Clearly, such an edge can be represented in our framework by a sequence ofm+ 1 edges, each labeled
by a different color, so that the colors are balanced and do not contribute to the color differences. The arena A is composed
by n sub-arenas Aj, one for each variable xj. Every sub-arena Aj, depicted in Fig. 5, has a starting node vj, an ending node
vj+1 and two sequences of nodes: {vj,i}mi=1, {vj,i}

m
i=1 where every node is associated with a clause. There is an uncolored edge

from vj to vj,1 (resp., vj,1, and from vj,m+1 (resp., vj,m+1) to vj+1. Moreover, we have that for all 1 ≤ i ≤ m, (i) there is an
uncolored edge from vj,i to vj,i+1 and from vj,i to vj,i+1, (ii) ifψi ∈ ψ(x) then there is an i-colored edge from vj,i to vj,i+1, and
(iii) if ψi ∈ ψ(x) then there is an i-colored edge from vj,i to vj,i+1. We call the sequence {vj,i}i the upper branch of Aj and the
sequence {vj,i}i the lower branch of Aj. The arena A is constructed by concatenating the sub-arena Aj with Aj+1, as they share
node vj+1, and by adding an (m+ 1)-colored edge back from vn to v1.

The construction of A is concluded by partitioning the set of nodes as follows: V1 = {v1, . . . , vn} and V0 = V \ V1.
Intuitively, every sub-arena Aj represents a truth choice for the variable xj. This choice is made by player 1 with the aim of
skipping the passage through some clauses. On the other hand, as soon as there is the chance, player 0 tries to pass through
each clause once during a single loop, in order to balance the clauses’ colors with the control color m+ 1. Let G = (A,Wbl)
and G′ = (A,Wbn), we now show the correctness of the above construction. In the following, we writevj,i to mean either
vj,i or vj,i.

[(i) implies (ii) and (iii)] If ψ is a tautology, then the winning strategy for player 0 in both games G and G′ may be
summarized as follows: for each color i, as soon as there is a chance pass through an edge of color i; then, do not pass
through such an edge again, until we pass again through v1. Formally, the strategy of player 0 is the following: each time
the play is in a nodevj,i, player 0 chooses to reachvj,i+1 through the i-colored edge iff color i does not appear in the least
suffix of the partial play starting with v1. We observe that during a single loop from v1 to itself, a strategy of player 1 is a
truth assignment to the variables of ψ: precisely for every sub-arena Aj, player 1 chooses to follow the upper branch iff xj
is true. Since ψ is a tautology, any such assignment satisfies ψ , i.e., given such an assignment a : {x1, . . . , xm} → {T , F},
for each clause ψi, there exists a variable x such that ψi is true also due to the value a(x). This means that player 0 can pass
through an i-colored edge at least once during a single loop, and thanks to his strategy, he will pass through such an edge
exactly once. Thus, during each loop, the uncolored edges are already perfectly balanced, and the edges added by player 0
are balanced thanks to the last (m + 1)-colored edge. Thus, during the infinite play, the color differences are always zero
when the play is in node v1. Since the loops from v1 to itself have bounded length, the color differences are bounded during
the play. Thus every infinite play consistent with the strategy is a bounded-difference path and, hence, a balanced path.

[(ii) or (iii) implies (i)]We prove the contrapositive, i.e., if (i) is false then both (ii) and (iii) are false. Ifψ is not a tautology,
then there is a memoryless winning strategy for player 1 on G and G′: player 1 follows a truth assignment of the variables of
ψ that does not satisfyψ . For such an assignment there is an unsatisfied clauseψi. So, during a loop from v1 to itself, if player
1 follows this strategy, player 0 cannot pass through any i-colored edge. Thus, at the end of the loop the color difference
between colors i and m + 1 is increased by one. Every play ρ is an infinite concatenation of simple loops from v1 to itself.

Since these loops havemaximum length l ≤ |E|, for all j ∈ N, we have diff i,m+1(ρ≤j) ≥
j
l , and thus limj→+∞

diff i,m+1(ρ≤j)
j ≥

1
l .

Therefore, every play consistent with that strategy of player 1 is not a balanced path, and hence not a bounded-difference
path. �

Theorem 9. Given a k-colored game G with balanced (resp., bounded-difference, frequency-f ) goal, the problem asking whether
there exists a winning strategy for player 0 is Co-NP-complete.
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Proof. By Lemmas 19 and 20, we have that the problems for the balance and the bounded-difference goal are Co-NP-
complete. Since the bounded-difference goal is a special case of frequency-f goal (for fi = 1/k), we have that the frequency-f
problem is Co-NP-hard too. Since by Lemma 19 the problem for frequency-f is in Co-NP, it is Co-NP-complete. �

8. Conclusions

Wecharacterized the computational complexity of certain notions of quantitative fairness on graphs and 2-player games.
As far as graphs are concerned, the reductions to linear programming pave the way for applications such as the automatic
generation of quantitatively fair plans or schedules. On the other hand, the Co-NP-completeness result obtained for games
may be regarded as essentially negative. In fact, the algorithm showing membership in (Co-)NP, once converted into a
deterministic form, simply suggests to try each one of the (exponentially many) memoryless strategies of player 1 in the
game, and solve a linear program to determine whether it is winning. It remains to investigate the possibility of practically
efficient algorithms, arising, for instance, from the analysis of the specific properties of the games of interest.

A natural open question arising in this framework is the following: if on a colored graph, or game, there is no bounded-
difference nor balanced path, what is the ‘‘most balanced’’ path one can achieve? This problem requires the introduction of
a suitable order relation on paths, defining when a path is ‘‘more balanced’’ than another.
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