
Bag Containment of Join-on-Free Queries
George Konstantinidis #

University of Southampton

Fabio Mogavero #

Università degli Studi di Napoli Federico II, Italy

Abstract
Bag-semantics allows for atomic relations and query answers to contain multiple copies of the

same data tuple, reflecting real-world database systems more accurately. Deciding containment under
bag-semantics (or simply, bag-containment) for two conjunctive queries (CQs) requires determining
whether the answer of the first query, taking multiplicities into account, is contained within the
answer of the second query, across all databases. Despite numerous attempts in the last thirty years,
this problem of determining decidability and complexity of this task remains open as one of the
prominent challenges in database theory, given its relevance in important applications.

Previous works have established the decidability of the problem for specific classes of queries,
among which is the the bag-containment of projection-free queries (PFQs), i.e., queries without
existentially quantified variables, into general CQs. In this work, we push the boundaries further by
addressing a broader, yet natural, fragment of CQs, called join-on-free queries (JoFQ), which allows
existential variables, while prohibiting joins involving them. We prove decidability of bag-containment
of a JoFQ within a general CQ, placing the complexity of the problem in the first non-deterministic
layer of the exponential hierarchy. The approach involves a homomorphism-counting reduction
to the solution of a system of Diophantine inequalities with a specific structure (an undecidable
problem in its general form) and an algorithm designed to address this category of inequalities.

2012 ACM Subject Classification Theory of computation → Database query languages (prin-
ciples); Theory of computation → Database query processing and optimization (theory); Theory of
computation → Logic and databases; Mathematics of computing → Combinatorics

Keywords and phrases Query Containment; Bag Semantics; Bag Containment; Diophantine Problems

Digital Object Identifier 10.4230/LIPIcs.ICDT.2025.2

Funding G. Konstantinidis was partially funded by the Horizon Europe projects DATAPACT (No.
101189771), RAISE (No. 101058479) and UPCAST (No. 101093216). F. Mogavero is member of
the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM)
and acknowledges a partial support by GNCS 2024 project “Certificazione, Monitoraggio, ed
Interpretabilità in Sistemi di Intelligenza Artificiale”.

1 Introduction

The query containment problem under bag-semantics has persisted as an unsolved conundrum
in database theory for the past thirty years. It refers to deciding whether the answer
of one query (a.k.a. containee) is always contained within the answer of another query
(a.k.a. containing), across all possible database instances. The problem has significant
applications in various areas of computer science, such as query optimisation [4, 22, 19], data
integration [26, 21], knowledge representation and reasoning [3], and data privacy [27, 13, 23].
The simplest and most-studied form of the problem concerns conjunctive queries (CQs),
which constitute the core of every structured query language, under set-semantics, where
duplicated tuples within database relations and query answers are not considered. Under
bag-semantics, instead, relations and answers are bags, i.e., multi-sets, allowing for multiple
copies of the same tuple, a possibility incidentally considered already in [15]. This semantics
constitutes the default behaviour on most RDBMSs, motivating the identification and study

© G. Konstantinidis, F. Mogavero;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Database Theory (ICDT 2025).
Editors: Sudeepa Roy and Ahmet Kara; Article No. 2; pp. 2:1–2:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.konstantinidis@soton.ac.uk
mailto:fabio.mogavero@unina.it
https://doi.org/10.4230/LIPIcs.ICDT.2025.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Bag Containment of Join-on-Free Queries

of the associated decision problems [5, 14], which, despite numerous attempts and significant
strides [20], remain open to date.

The containment problem for CQs under set-semantics was shown to be NPTime-complete
in [4], equivalent to the homomorphism detection problem between the two queries, which,
in turn, corresponds to the evaluation of the containing query on the canonical instance of
the containee one. In a series of articles [12, 9, 10, 2, 6, 7, 8], starting with [5, 14], partial
positive decidability and complexity results were presented for the bag-semantics version of
the problem. These works, most relying on homomorphism manipulations, either offered
robust yet incomplete criteria for containment/non-containment, or focused on providing
complete decision procedures for significant subclasses of CQs. On the other hand, interesting
extensions of the bag-containment problem were proven to be undecidable [14, 16, 28],
commonly establishing connections to the validity problem of Diophantine inequalities, a
question tightly related with Hilbert’s 10th Problem [11, 30, 29].

In 2011, Kopparty and Rossman [25] gave start to a new line of research that tries to solve
the equivalent homomorphism domination problem by means of more sophisticated techniques
grounded in information theory. They proved the decidability for particular classes of CQs
enjoying specific graph-theoretic structures, known as chordal and series-parallel. More
recently, Khamis et al. [17, 18] expanded upon this idea, proving that the bag-containment
problem involving arbitrary containee queries into acyclic containing ones is equivalent to
an unresolved question regarding the validity of certain information inequalities. They also
showed decidability for the chordal containing queries having a simple junction tree.

In [24] we studied a natural fragment of CQs, and proved that deciding the bag containment
of a projection-free query (PFQ), i.e., a query without existentially quantified variables, into
an arbitrary CQ is in ΠP

2 and NPTime-hard. This work first reduced the containment
problem to solving a special case of Diophantine inequalities, known as monomial-polynomial
inequalities (MPI), and then presented a solution procedure for the latter, based on the
resolution of a linear system. Notably, this approach marks the first use of Diophantine
inequalities to prove decidability of a bag-semantics question.

In this work, we continue in the steps of [24] by presenting a decidability result for a
broader, yet equally natural, class of containee queries, called join-on-free queries (JoFQ),
which allows existential variables, but forbids their participation in joins. Surprisingly, despite
being often used for examples in bag-containment literature [5, 2], this class has never been
formally identified or studied. To tackle the problem, first, we prove that we can focus on
bag-set containment of Boolean JoFQs (JoFBQ) into Boolean CQs (BCQ) (Theorems 2, 3
and Problem 1). Then, we devise the notion of multicanonical instance (Def. 8) induced by
the minimal unification closure (Def. 4) of the containee query. Such an instance represents
the simplest structure that potentially disproves containment. In addition, we introduce the
notion of net-images (Def. 5), which are sets of image tuples exclusive to different query
atoms. This enables the counting (Thm. 9) and comparison (Thm. 10) of the number of
homomorphisms of the two queries, modelling the containee as a monomial function and the
containing as a polynomial function (Thm. 15). This results in an MPI of a more general
form than those of [24], also coupled with additional linear constraints (Thm. 16). Then,
we delve into solving the resulting system of Diophantine inequalities, expanding upon the
technique in [24], where an algorithm is described for MPIs with only positive coefficients.
Nevertheless, coming to the rescue, the addressed polynomials enjoy a property that we
identify as strong non-negativeness (Def. 18). The linear constraints which supplement the
MPI make a direct reduction to the solution of a linear system unfeasible and so we engage
in a series of intermediate results to achieve the reduction. In particular, we first solve a

G. Konstantinidis, F. Mogavero 2:3

more specific instance of the problem (Prob. 3 and Thm. 23) and then leverage this to attack
the original one (Prob. 2 and Thm. 27), providing so an ∃∀-alternating polynomial-time
solution (Thm. 28). To the best of our knowledge, this particular Diophantine problem has
not been explored in the existing literature. Summing up, we prove that both bag-bag and
bag-set containments of JoFQs into CQs are decidable in CoNExpTime (Thm. 30).

2 Preliminaries

We consider the standard logic notions of relations, variables, constants, terms (variables
or constants), n-tuples t of terms, with

∣∣t∣∣ = n their arity, atoms R(t), and ground atoms,
a.k.a. facts, R(c) where c is a tuple of constants [1]. Relations are sets of facts. Vr(s), Cn(s),
and Tr(s) denote the set of variables, constants, and terms in any syntactic expression s. A
function h between terms is called mapping. By h(s) we denote the expression obtained by
replacing all terms in s with their h-image; terms outside the domain of h remain unchanged.

Given C ⊆ Cn, T1, T2 ⊆ Tr, a mapping h : T1 → T2 is C-preserving if h(c) = c for all
c ∈ C∩T1. Given two sets of atoms S1 and S2, a homomorphism h from S1 to S2 is a Cn(S1)-
preserving mapping h : Tr(S1)→ Tr(S2) such that h(S1) ⊆ S2. The set of homomorphisms
from S1 to S2 is denoted by Hom(S1, S2). For two atoms a1 and a2, we write a1 ⪯C a2
if there is a C-preserving mapping h such that h(a2) = a1; ⪯ is called the homomorphic
ordering over atoms. Obviously, a1 ⪯Cn(a2) a2 implies the existence of a homomorphism from
a2 to a1. The expressions a1 ≈C a2 and a1 ≺C a2 have the obvious meaning. For a syntactic
expression s, we assume ⪯s to mean ⪯Cn(s). Given atoms a1, a2 and C = Cn(a1)∪Cn(a2), a
mapping u : Tr(a1) ∪ Tr(a2)→ Tr(a1) ∪ Tr(a2) is a unifier for a1 and a2 if it is C-preserving
and u(a1) = u(a2) (unifiers do not always exist). The most general unifier for a1 and a2 is a
unifier denoted mgu(a1, a2) such that, for every other unifier u for a1 and a2, it holds that
u ⪯C mgu(a1, a2) (meaning, for every atom a3, u(a3) ⪯C mgu(a1, a2) (a3)). We lift unifiers
to sets and write mgu(S) for the atom that is the result of the unification on S.

A conjunctive query (CQ) q(x) is a first-order formula of the form ∃y
∧n

i=1 Ri(xi, yi),
where

∧n
i=1 Ri(xi, yi) is a conjunction of n (possibly repeated) atoms. We often use the

datalog notation for a CQ: q(x)← R1(x1, y1), . . . , Rn(xn, yn). The set of atoms in a query q

is denoted by body(q). When clear from context we use q, q(x) or body(q) interchangeably.
When x = ∅ the query is Boolean (BCQ). A set database instance (or instance) I is a set of
facts (belonging to relation instances). The answer under set semantics of a CQ q(x) over an
instance I, denoted q(I) is a set of |q|- tuples c of constants s.t., there is a homomorphism h
from body(q) to I where h(x) = c.

A bag or multiplicity over a set I is function µ : I → N. The answer under bag-bag
semantics of a CQ q(x) = ∃y

∧n
i=1 Ri(xi, yi) over bag instance µ, is the bag qI,µ

bb : q(I)→ N s.t.,
for any tuple c ∈ q(I), the multiplicity of c is qI,µ

bb (c) =
∑h(x)=c

h∈Hom(q(x),I)
∏

i µ(h(Ri(xi, yi)))).
Notice that syntactic repetitions in ∃y

∧n
i=1 Ri(xi, yi) correspond to different factors in

the product of the multiplicity. The answer under bag-set semantics of q(x) over I, denoted
qI

bs, is the same as qI,µ
bb : q(I) → N but with µ defined to have range {1}, simply counting

the number of homomorphisms for an answer tuple of a q. In this semantics, repetitions of
ground atoms do not matter – so we assume no atom repetitions.

Given CQs q and p we say that q is set contained in p, in symbols q ⊑s p, if, for all set
instances I, it holds that q(I) ⊆ p(I). Similarly, we say that q is bag-bag (bag-set) contained
in p, in symbols q ⊑bb p (q ⊑bs p) , if for all bags µ over instances I, it holds that qI,µ

bb ⊆ pI,µ
bb

(qI
bs ⊆ pI

bs), which means qI,µ
bb (t) ≤ pI,µ

bb (t) (qI
bs(t) ≤ pI

bs(t)), for all t ∈ I. Recall that bag-bag
containment implies bag-set containment, which implies set-containment [5].

ICDT 2025

2:4 Bag Containment of Join-on-Free Queries

3 Join-on-Free Query Containment

Join-on-Free Queries are a large and natural class of CQs, whose join variables are all free,
i.e., joins do not involve existential variables.

▶ Definition 1. A CQ ∃y
∧n

i=1 Ri(xi, yi) is join-on-free (JoFQ), if yi ∩ yj = ∅, for all
i, j ∈ [1, n] with i ̸= j.

This class contains queries for which bag-containment has been discussed, but remained
unsolved, such as the the classic example from [5].

q(x, z)← P(x), Q(u, x), Q(v, z), R(z); p(x, z)← P(x), Q(u, y), Q(v, y), R(z).

Note that q is JoFQ since its existential variables do not join. The authors of [5] claimed
that q is bag-contained in p, but no algorithm has been provided. We give a positive answer
to this open problem, by presenting a decidability result for such containment questions, for
both bag-bag and bag-set semantics. In fact, bag-bag and bag-set containments are poly-time
reducible to each other (claimed in [5], then proved in [16]). To do these reductions one
needs to change the queries. Here, we provide a linear-time reduction from the first to the
second problem that also maintains the property of the containee query being join-on-free.

▶ Theorem 2. For every pair of CQs (q, p), with q a JoFQ, we can obtain in linear-time a
pair of CQs (q′, p′), with q′ a JoFQ as well, such that q ⊑bb p iff q′ ⊑bs p′.

The next theorem states that bag-set containment of CQs reduces to bag-set containment
of BCQs. For this, we use probe tuples introduced in [24], which are tuples of fresh constants
not appearing in the two queries. Note that, there are exponentially many probe tuples
simulating all patterns of repetitions of constants in the positions of free variables.

▶ Theorem 3. For every pair of CQs (q(x), p(x)), it holds that q ⊑bs p iff q(t) ⊑bs p(t), for
all probe tuples t for q.

Thus, we subsequently focus on the bag-set containment problem for boolean JoFQs (i.e.,
JoFBQs). We also assume that all constants in the containing query appear in the containee
one; otherwise, the queries are not even set contained. Fig. 1 introduces a running example
used along this work.

▶ Problem 1. Given a pair of BCQs (q, p), where q is a JoFBQ and Cn(p) ⊆ Cn(q), the
join-on-free containment problem under bag-set semantics (JoF- BCP) is the problem of
deciding whether q ⊑bs p holds true.

Images & Net Images of Atoms. Essentially, a JoFBQ does not contain any joins, as the
only common terms among atoms are constants. Due to this, we can show that its bag-set
multiplicity, i.e., the number of homomorphisms it has to an instance, can be computed as
the product of the number of homomorphisms each different atom in the query has to that
instance. A JoFBQ might still contain atoms of the same predicate, known as self-joins (note,
containment on self-join-free queries is decidable [2, 14]). Thus, two atoms in a JoFBQ might
have the same image (i.e., atoms are unifiable). Still, we can compute their multiplicity
through a monomial function whose parameters correspond to the number of tuples in the
image of an atom. As an example, the 140 multiplicity of the query q on the instance I of
Fig. 1 can be obtained as the products of the cardinalities g1 = 5, g2 = 7, and g3 = 4 of

G. Konstantinidis, F. Mogavero 2:5

JqK : a1
R(x1,c,y1)

a12
R(x2,c,c)

a2
R(x3,y2,y2)

a23
R(c,d,d)

a3
R(c,d,x4)

⪰q ⪯q ⪰q ⪯q

p : R(x1,y1,z1)

b1

R(x1,y2,z2)

b2

R(x2,y2,z3)

b3

R(x3,y3,z4)

b4

R(x4,z4,y4)

b5

p1 p2

I =
0,c,1
2,c,3
4,c,5

6,c,c
7,c,c

8,9,9
10,11,11
12,13,13
14,15,15

c, d, d
c,d,16
c,d,17
c,d,18

n1 = 3 g12
n12 = 2 n2 = 4

g23
n23 = 1

n3 = 3

g1 = n1 + n12 = 5
g2 = n2 + n12 + n23 = 7 g3 = n3 + n23 = 4

q : r1
R(x1,c,y1)

r2
R(x2,y2,y2)

r3
R(c,d,x3)

Figure 1 A three-atom JoFBQ q, the associated minimal unification closure JqK with homomorphic
ordering ⪯q among its five atoms ai, a multicanonical instance I for q, and a BCQ p obtained as
the cross-product of the two BCQs p1 and p2.

the three sets of tuples images (enclosed in the solid blue regions) of its three atoms. Such
simple closed expressions are not directly derivable, however, for the arbitrary BCQs p used
as containing queries in Prob. 1. To address this, we need a notion of canonical instance
(see [1]) that precisely reflects the structure of the containee query. In particular, in this
context, it has to reflect the closure of the containee query under unification of its atoms,
per the following definition.

▶ Definition 4. The minimal unification closure of a JoFBQ q, denoted by JqK, is a minimal
set of atoms w.r.t. set inclusion such that: (a) for all unifiable sets of atoms S ⊆ q, there
exists an atom a ∈ JqK with a ≈q mgu(S); (b) no two atoms in JqK share a variable.

Observe that the minimal unification closure is unique up to isomorphism. As an example,
a possible set JqK for the JoFBQ q is reported in Fig. 1. It contains the three atoms ai, with
i ∈ {1, 2, 3}, isomorphic to the atoms ri in q, and the two atoms a12 and a23, obtained as
the unification of the two subqueries {r1, r2} and {r2, r3}. These are all the unifications one
can perform in q; any additional atom would make JqK non minimal.

Due to the minimality of the closure, every unifiable subset S of q has a unique element in
JqK isomorphic to mgu(S). Thus, by JaKq, with a ∈ q, we can denote the unique atom in JqK
such that JaKq ≈q mgu({a}) ≈q a. For example, in Fig. 1, we have JriKq = ai. For the same
reason, JqK cannot contain two different isomorphic atoms. Hence, if two atoms a, â ∈ JqK
have a common image tuple in an instance I, it must be the case that either â ≺q a or a

≺q â. This allows us to define a decomposition of I into sets of tuples that are exclusively in
the image of a single atom from JqK. We call these sets net-images. In order to stress the
difference with the sets of image tuples, we sometimes refer to the latter as gross-images.

▶ Definition 5. For all JoFBQs q, atoms a ∈ JqK, and instances I:

• the image of a on I w.r.t. q is the set imgq(a, I) ≜ {b ∈ I | b ⪯q a};
• the net-image of a on I w.r.t. q is the set nimgq(a, I) ≜ imgq(a, I) \

⋃â≺qa

â∈JqK
imgq(â, I).

In Fig. 1, the solid blue (resp., dashed red) arrows connect the atoms ai to the corres-
ponding images imgq(ai, I) (resp., net-images nimgq(ai, I)) in I w.r.t. q. These sets of tuples
are enclosed by the solid blue (resp., dashed red) regions having sizes gi (resp., ni). For

ICDT 2025

2:6 Bag Containment of Join-on-Free Queries

example, the tuple ⟨0, c, 1⟩ is both in the image and net-image of a1, while the tuple ⟨6, c, c⟩
is in the images of a1, a2, and a12, but in the net-image of a12 only. Similarly, ⟨c, d, d⟩ is in
the images of a2, a3, and a23, but in the net-image of a23 only. It should be evident that the
image of an atom a in JqK is completely partitionable into the net-images of all atoms â that
are related to a by the homomorphic ordering ≺q, as prescribed by the following theorem.

▶ Theorem 6. Given an instance I, a JoFBQ q, and an atom a ∈ JqK, the set of all
subsumed net-images

{
nimgq(â, I)

∣∣ â ∈ JqK, â ⪯q a
}

of a on I w.r.t. q forms a partition of
the corresponding image imgq(a, I).

In the next section we will show how to compute the multiplicity of a containing query p

by just looking at the sizes of gross- and net-images of each atom in the minimal unification
closure JqK of the containee query q. It is therefore important to characterise the values that
these sizes can assume. Obviously, ground atoms have at most one net-image tuple in any
instance (e.g., a23 in Fig. 1 has only ⟨c, d, d⟩ in both its gross- and net-image). Other than
this, net-images can have arbitrary sizes. On the contrary, due to Thm. 6, the number of
tuples in any gross-image is uniquely dictated by those of the included net-images (e.g., the
size g2 of the gross-image of a2 is the sum of the sizes n2, n12, and n23 of the net-images of
a2, a12, and a23). The following definition formalises these requirements.

▶ Definition 7 (Net-Image/Image Function). Given a JoFBQ q:

• a net-image function for q is a function n : JqK→ N such that n(a) ≤ 1, for every ground
atom a ∈ JqK;

• an image function for q is a function g : JqK → N for which there exists a net-image
function n such that g(a) =

∑â⪯qa

â∈JqK
n(â).

Multicanonical Instances. We can now introduce the notion of multicanonical (database)
instance of a JoFQ as an instance that precisely reflects the structure of its minimal unification
closure up to isomorphism and number of tuples. Besides forcing all tuples in the instance to
be part of the gross/net-image of an atom of the query, we also minimise joins by avoiding
the sharing of non-query-constant values between different tuples.

▶ Definition 8. A multicanonical instance for a JoFBQ q is an instance I satisfying the
following constraints:

(1) for all data tuples d ∈ I, there exists an atom a ∈ JqK with a ≈q d;
(2) Tr(d1) ∩ Tr(d2) ⊆ Cn(q), for all data tuples d1, d2 ∈ I.

Clearly, the only essential difference between two different multicanonical instances resides
in the number of tuples in the gross/net-images of the atoms. This means that, for each
image (resp., net-image) function g (resp., n) for a JoFBQ q, there exists a unique up
to isomorphism multicanonical instance for q with the sizes of images (resp., net-images)
prescribed by g (resp., n), and vice versa.

Instance I of Fig. 1 is an example of a multicanonical instance for the query q. In fact,
we can transform any instance I into a multicanonical one I∗

q for a JoFBQ q, still preserving
the multiplicity of q. The intuition behind this transformation is to generalise the net-image
tuples of an atom a in JqK until they are isomorphic to a itself, while breaking, at the
same time, all joins that do not correspond to query constants. For example, the extension
I ∪ {R(8, c, 8), R(8, c, c)} of I in Fig. 1 can be made multicanonical by changing the two
additional tuples into R(19, c, 20) and R(21, c, c)}. The next theorem formalises this idea, by
also showing that any other BCQ p can only decrease its multiplicity passing from I to I∗

q .

G. Konstantinidis, F. Mogavero 2:7

▶ Theorem 9. For all JoFBQs q and instances I, there exists a multicanonical instance I∗
q

for q such that:

(a) |Hom(q, I)| = |Hom(q, I∗
q)| =

∏
a∈q|imgq(JaKq, I)|;

(b) |Hom(p, I)| ≥ |Hom(p, I∗
q)|, for all BCQs p.

This result implies that Prob. 1, i.e., the bag-set containment of JoFBQs into BCQs, can
be decided by just searching for violations within the realm of multicanonical instances.

▶ Theorem 10. For every pair (q, p) ∈ JoF- BCP, the following statements are equivalent:
(a) q ̸⊑bs p; (b) there exists a multicanonical instance I for q such that qI

bs ̸⊆ pI
bs.

4 Counting Homomorphisms

Thm. 9a states that the multiplicity of a JoFBQ q on any instance is given by the product
of the sizes of its atom images. That is, given a multicanonical instance I and its image
function g, the following monomial function computes the multiplicity of q on I:

Mq(g) ≜
∏

a∈q g(JaKq).

Counting Through Lenses. Similar to [24], the idea is to solve a polynomial inequality
characterising the containment problem. Specifically, given a multicanonical instance I for
the containee JoFBQ q, we need to compute the multiplicity of any given containing BCQ p

by constructing a polynomial function for it. Differently to [24], however, the presence of
existential variables in q considerably complicates the analysis.

Consider, for example, the multiplicity of the containing subquery p1 of Fig. 1, on just the
g2 = 7 tuples in the image of a2 (the middle solid blue region). On this subinstance, p1 has
nine homomorphisms: four of them map the three atoms b1, b2, and b3 to the n12 = 2 tuples
in the net-image of a12; four additional homomorphisms map these atoms to the n2 = 4 tuples
in the net-image of a2; finally, a single homomorphism goes on the tuple in the net-image of
a23. It should be now clear that, to count these homomorphisms, we cannot just look at the
gross-image of a2 (as the approach in [24] would do), without considering its partitioning
into the contained net-images. In fact, as elaborated later, the correct count is given by the
polynomial function n2

12 + n2 + n3
23 = 22 + 4 + 13 = 9. Observe however that, in order to

compare the polynomial function for the containing query against the monomial function
described above for the containee one, we need to express the multiplicity in terms of the sizes
of the gross-images. This would mean, for the previous example, to evaluate the following
polynomial with negative coefficients: g2

12 + (g2− g12− g23) + g3
23 = 22 + (7− 2− 1) + 13 = 9.

The example also shows how homomorphisms ĥ ∈ Hom(p, I) from p to the data in I can
be clustered based on their shape, i.e., on the homomorphism h ∈ Hom(p, JqK) from p to JqK
that, by abstracting from the actual values of the data, identifies the symbolic tuple h(b) in
JqK whose net-image contains the actual tuple ĥ(b), for each atom b in p. In fact, h is a lens
on Hom(p, I) that allows to identify and count all homomorphisms with the same shape.

▶ Definition 11. Let (q, p)∈JoF- BCP. The lens of a homomorphism h ∈ Hom(p, JqK) over an
instance I is the set of homomorphisms LI,h

q,p≜
{

ĥ ∈ Hom(p, I)
∣∣∣∀a ∈ p. ĥ(a) ∈ nimgq(h(a), I)

}
.

Consider in Fig. 1 the homomorphism, say h1, from p to JqK that maps the subquery p1
onto the atom a12 (solid magenta arrows), and the subquery p2 onto the atoms a23 and a3
(dashed orange arrows). The lens for this homomorphism contains all six homomorphisms
that map b1, b2, b3 onto the net-image of a12 and b4 and b5 onto the net-images of a23 and

ICDT 2025

2:8 Bag Containment of Join-on-Free Queries

a3. Dually, every homomorphism from p to I belongs to some lens. E.g., the homomorphism
{x1, x2 7→ c; y1, y2 7→ d; z1, z2, z3 7→ 16; x3, x4 7→ 8; y3, y4, z4 7→ 9} is in the lens of the
homomorphism, say h2, from p to JqK mapping the subquery p1 onto a3 (dashed green arrows)
and the subquery p2 onto a2 (solid grey arrows). Thus, the lenses cover the set Hom(p, I);
even more, they fully partition it, as stated in the following.

▶ Theorem 12. For each pair (q, p) ∈ JoF- BCP and multicanonical instance I for q, the set
of lenses

{
LI,h

q,p

∣∣ h∈Hom(p, JqK)
}

over I is a partition of the set of homomorphisms Hom(p, I).

Clearly, Thm. 12 lets us compute the multiplicity of the containing query p by summing
up the sizes of all lenses LI,h

q,p, with h ∈ Hom(p, JqK). Towards estimating these sizes, first note
that each atom a = h(b), with b ∈ p, gives rise to at least n(a) homomorphisms in the lens.
For example, in Fig. 1, atom a2 has n2 = 4 net-image tuples in I. This forces the lens of the
homomorphisms from p1 onto a2 (dotted blue arrows), say h3, to contain at least four different
homomorphisms from p1 to I, each mapping one of the three atoms bi to one of the four
tuples in nimgq(a2, I). Obviously, we can have at most 43 such homomorphisms. However,
not all atoms may map independently onto these tuples. For this particular lens, in fact, all
atoms of p1 have to map to the exact same tuple, giving rise just to four homomorphisms.
In more detail, if b1 maps to ⟨8, 9, 9⟩, then, due to join on x1 7→ 8, atom b2 maps onto the
same tuple, which in turns forces b3 to do the same, due to join on y2 7→ 9. Therefore,
|LI,h3

q,p1
| = n2. The fact that values 8 and 9 are unique to the first tuple in the net-image is no

coincidence, since they correspond to existential variables in a2, which always map to unique
values in a multicanonical instance. For two joined atoms of p to differentiate in their image
through h, they have to join only on constants of q. Thus, two atoms of p containing a join
variable mapped by h to a variable of JqK do not contribute to the total size of its lens in a
multiplicative way, but rather they are equivalent w.r.t. h, in a sense formalised as follows.

▶ Definition 13. Given a pair (q, p) ∈ JoF- BCP, two atoms b1, b2 ∈ p are existentially
joined through a homomorphism h ∈ Hom(p, JqK), in symbols b1 ⋊⋉h b2, if there exists a
variable x ∈ Vr(b1) ∩ Vr(b2) such that h(x) /∈ Cn(q). The equivalence relation obtained as
transitive closure of the reflexive and symmetric relation ⋊⋉h is denoted by ≡h.

Intuitively, equivalent atoms w.r.t. a homomorphism h essentially act as single atom, since
their image coincide in every homomorphism in the lens of h. On the contrary, all different
equivalent classes w.r.t. ≡h act as independent atoms. Consider again the homomorphism
h3 discussed above. Clearly, both b1 ⋊⋉h3 b2 and b2 ⋊⋉h3 b3, thus b1 ≡h3 b2 ≡h3 b3. This is
graphically represented in Fig. 1 by the dotted cyan area grouping b1, b2, and b3. Consider
now the homomorphisms, say h4, from p1 onto a12 (solid magenta arrows). In this case, we
have b1 ⋊⋉h4 b2, but neither b1 ⋊⋉h4 b3 nor b2 ⋊⋉h4 b3. Thus, b1 ≡h4 b2 is the only possible
equivalence, as represented by the two solid magenta areas containing b1 and b2, on one side,
and b3 alone, on the other one. As a consequence of this equivalence, all homomorphisms
in the lens of h4 map b1 and b2 to the same tuple in nimgq(a12, I), still allowing b3 to be
mapped to a different tuple. Therefore, |LI,h4

q,p1
| = n2

12.
Given a homomorphism h∈Hom(p, JqK) and an atom a∈JqK, let h−1(a)={b ∈ p | h(b) = a}

be the inverse image of a. The number
∣∣h−1(a)/ ≡h

∣∣ of equivalence classes w.r.t. h and a

over that set is denoted by ηp(h, a).
As an example, for the homomorphisms h1 and h2 from p to JqK previously discussed, we

have ηp(h1, a12) = 2 and ηp(h1, a23) = ηp(h1, a3) = 1, while ηp(h2, a2) = 1 and ηp(h2, a3) = 3.
For this reason, the sizes of the two corresponding lenses LI,h1

q,p and LI,h2
q,p can be computed

via the monomial functions n2
12 · n1

23 · n1
3 = 22 · 11 · 31 = 12 and n1

2 · n3
3 = 41 · 33 = 36, as

prescribed by the next theorem.

G. Konstantinidis, F. Mogavero 2:9

▶ Theorem 14. For all pairs (q, p) ∈ JoF- BCP, multicanonical instance I for q, homomorph-
ism h ∈ Hom(p, JqK), and lens LI,h

q,p of h over I, it holds |LI,h
q,p| =

∏
a∈h(p)|nimgq(a, I)|ηp(h,a).

Polynomial-Function Characterisation. As an immediate consequence of Thms. 12 and 14,
the multiplicity of the containing query p can be computed as a polynomial function taking
as parameter the net-image function n of the multicanonical instance I for the containee
query q as follow:

Np
q(n) ≜

∑
h∈Hom(p,JqK)

∏
a∈h(p) n(a)ηp(h,a).

E.g., for the two subqueries p1 and p2 of Fig. 1, after some grouping, we have Np1
q (n) =

(n(a1) + n(a12))2 + n(a2) + (n(a23) + n(a3))3 and Np2
q (n) = (n(a1) + n(a12)) · n(a12) + n(a2) +

n(a23) · (n(a23) + n(a3)).
However, the monomial function Mq(g) previously introduced for q takes as parameter

the gross-image function g of the multicanonical instance I. Thus, to properly compare the
two multiplicities, we need to obtain a polynomial function for p parameterised on g as well.
Fortunately, Def. 7 ensures that every gross-image function g has an associated net-image
function ng recursively defined as follows: ng(a) = g(a)−

∑â⪯qa

â∈JqK
ng(â). The expert reader

might here note that this transformation is essentially an application of the Möbius inversion
formula on posets [31, 33]. This allows to obtain the following polynomial function for p:

Pp
q(g) ≜ Np

q(ng) =
∑

h∈Hom(p,JqK)
∏

a∈h(p) ng(a)ηp(h,a).

E.g., for the two subqueries p1 and p2 of Fig. 1, after exploiting the equalities ng(a1) =
g(a1) − g(a12), ng(a12) = g(a12), ng(a2) = g(a2) − g(a12) − g(a23), ng(a23) = g(a23), and
ng(a3) = g(a3)− g(a23), we obtain Pp1

q (g) = g(a1)2 + (g(a2)− g(a12)− g(a23)) + g(a3)3 and
Pp2

q (g) = g(a1) · g(a12) + (g(a2)− g(a12)− g(a23)) + g(a23) · g(a3).
Thus, thanks to Thm. 10 and the characterisations of the multiplicities of the two queries,

a solution for Prob. 1 reduces to the following non-existence of an image function.

▶ Theorem 15. For every pair (q, p) ∈ JoF- BCP, the following statements are equivalent:
(a) q ̸⊑bs p; (b) there exists an image function g for q such that Mq(g) > Pp

q(g).

Monomial-Polynomial Characterisation. Modelling the values in the range of an image
function g as unknowns u, allow us to introduce the symbolic monomial Mq(u) and polynomial
Pp

q(u) for the functions Mq(g) and Pp
q(g). Note that Pp

q(g) does not have a polynomial form,
since products and summations are nested inside each other due to the recursive definition
of the net-image function ng. Nevertheless, there is always an equivalent polynomial form,
which can be obtained via standard syntactic manipulations.

Thm. 16 below links a negative answer to Prob. 1 with a solution of an inequality between
Mq(u) and Pp

q(u). Intuitively, the values of this solution correspond to the values of an image
function that induces an instance disproving containment. To ensure such a correspondence,
we need to verify the constraints specified in Def. 7. We consider some linear constraints,
one per unknown, based on the following symbolic version of the formula used to compute
the net-image function ng from the image function g: Ca

q (u) ≜ ua −
∑â≺qa

â∈JqK
Câ

q (u). Note that,
Ca

q (u) = ua, for a ∈ min≺qJqK.

▶ Theorem 16. For every pair (q, p) ∈ JoF- BCP, the following statements are equivalent:
(a) q ̸⊑bs p; (b) there is a Diophantine solution of Mq(u) > Pp

q(u) that satisfies the
inequalities {Ca

q (u)≥0}a∈JqK.

ICDT 2025

2:10 Bag Containment of Join-on-Free Queries

Before turning to the algorithmic solution of the Diophantine problem identified in the
above theorem, let us consider for a final time the two queries q and p reported in Fig. 1.
The corresponding Diophantine inequality Mq(u) > Pp

q(u), with Pp
q(u) = Pp1

q (u) · Pp2
q (u), is

ua1ua2ua3 > (u2
a1

+ ua2 − ua12 − ua23 + u3
a3

)(ua1ua12 + ua2 − ua12 − ua23 + ua23ua3).

Note that the monomial on the left hand side of our inequality only uses a subset of the
unknowns, namely, the gross image cardinalities that correspond to atoms of the minimal
unification closure. The associated system {Ca

q (u)≥0}a∈JqK of linear inequalities induced by
the homomorphic ordering ⪯q over the set of atoms JqK = {a1, a12, a2, a23, a3} is, instead,

Ca1
q (u) = ua1 − ua12 ≥ 0, Ca12

q (u) = ua12 ≥ 0,

Ca2
q (u) = ua2 − ua12 − ua23 ≥ 0, Ca23

q (u) = ua23 ≥ 0, Ca3
q (u) = ua3 − ua23 ≥ 0.

5 A Diophantine Problem

In the preceding sections, we established a connection between the bag-set containment
problem of JoFBQs into BCQs and the unsolvability of a specific Diophantine inequality,
when conjoined with a set of linear constraints. Here we perform a broader analysis of
the structural underpinnings of this mathematical encoding, which will provide the sought
algorithmic solution to the entire question. It is important to recall that deciding the
existence of a Diophantine solution for a polynomial inequality is, in general, impossible [14],
due to its tight relationship with Hilbert’s 10th problem [29]. Therefore, we need to identify
sufficient conditions under which decidability can be achieved. The technical development of
this work generalises the approach proposed in [24]. Thus, we employ a similar notation.

Given two n-vectors of unknowns u ∈ Unn and natural numbers e = {eu}u∈u ∈ Nn, for
some n ∈ N+, we denote by ue the unitary monomial

∏
u∈u ueu in the polynomial ring Z[u].

A Monomial-Polynomial Inequality (MPI) is an expression of the form M(u)>P(u), where
M(u) = ue ∈ Z[u] is a unitary monomial and P(u) =

∑m
i=1 αiuei ∈ Z[u] is a polynomial

with coefficients {αi}m
i=1⊆ Z \{0}, for some m ∈ N+. A Generalised MPI (GMPI) allows for

non-negative real exponent vectors {e} ∪ {ei}m
i=1⊆ Rn

≥0.
As already observed in the last example of the previous section, the linear constraints on

the sizes of images given in Thm. 16 are unambiguously induced by the homomorphic ordering
⪯q of the atoms contained in the minimal unification closure JqK of the containee JoFBQ
q. Here, we generalise this concept. Given a partially ordered set (poset) P = ⟨u,⪯⟩ on the
n-unknowns u ∈ Unn, we introduce the following recursive definition of a distinguished set
{Cu

P(u) ∈ Z[u]}u∈u of linear polynomials, one per unknown in u: Cu
P(u)≜u−

∑u′≺u
u′∈u Cu′

P (u).
Note that Cu

P(u) = u, when u ∈ min⪯u. Again, this is just another application of a Möbius
inversion formula. The linear polynomials just introduced represent the number of net-
image tuples discussed earlier, once the unknowns are substituted with the count of images
attributed to the respective atom.

To accurately represent the sizes of images, the linear polynomials must yield non-negative
values. To solve an MPI, we look for vectors of values, called P-coherent values, adhering to
these constraints.

▶ Definition 17. An n-vector of values ξ = {ξu}u∈u ∈ Nn is P-coherent, given a poset P =
⟨u,⪯⟩ on u ∈ Unn, if it satisfies the system of linear polynomial inequalities {Cu

P(u)≥0}u∈u .

To tame the undecidability of the general case, we focus on polynomials with a particular
trait: they maintain non-negativity when evaluated on coherent vectors, even upon the

G. Konstantinidis, F. Mogavero 2:11

removal of the unitary form of one of their positive monomials. We will later show that the
polynomial Pp

q(u), for any BCQ p and JoFBQ q, enjoys this desirable property.

▶ Definition 18. A polynomial P(u) =
∑m

i=1 αiuei ∈ Z[u] on u ∈ Unn is strongly non-
negative w.r.t. a poset P = ⟨u,⪯⟩ whenever (a) αi ≥ 1, for some i ∈ [m], and (b) if αi ≥ 1
then the associated polynomial P(u) − uei is non-negative when evaluated on P-coherent
vectors in Nn, for all i ∈ [m].

Clearly, the homomorphic ordering ⪯q applied to the atoms within JqK induces a poset.
On a closer examination, it becomes apparent that this structure closely resembles a meet
semilattice, due to its defining property: when considering any two atoms that unify, their
most general unification is also an element of JqK. Nevertheless, it is important to acknowledge
the potential presence of non-unifiable atoms. Thus, in order to complete this structure,
making it a meet semilattice, we have to include a distinct minimal element. A 0-completable
meet semilattice (0-cmsem) P = ⟨U,⪯⟩ is a poset such that, for every subset V ⊆ U, there
exists an element in {0}∪U, called greatest lower bound of V, a.k.a. infimum or meet, usually
denoted by

∧
V, such that

∧
V ⪯0 u, for all u ∈ V, where ⪯0 is the extension of the order

relation ⪯ having 0 as smallest element. We can now state the Diophantine decision problem.

▶ Problem 2. Let M(u)>P(u) be an MPI on u∈Unn and P=⟨u,⪯⟩ a 0-cmsem, where P(u)
is strongly non-negative w.r.t. P. Is there a P-coherent Diophantine solution for the MPI?

Consider the MPI Mq(u) > Pp
q(u), the linear inequality system {Ca

q(u)≥ 0}a∈JqK, and
the 0-cmsem P= ⟨JqK,⪯q⟩, with JqK = {a1, a12, a2, a23, a3}, discussed after Thm. 16 in the
example related to Fig. 1. The existence of a simultaneous solution of the MPI and the linear
system would result in a positive answer to the associated instance of Prob. 2 and vice versa.

In line with the methodology presented in [24], the solution of the introduced decision
problem involves a reduction to and a resolution of a homogeneous (i.e., without constant
terms) linear system of inequalities. Yet, unlike the direct reduction employed there, here we
do this in two different phases, in order to deal with the additional linear constraints. Initially,
our focus lies in solving a more specific problem (see Prob. 3 below), seeking solutions that
adhere to (i) being positive, and (ii) having distinct values for any neighbouring pair of
unknowns within the given poset. Subsequently, we reduce Prob. 2 to potentially several
instances of Prob. 3, facilitating a systematic handling of these constraints.

Strict Solutions. To formalise the restrictions on the solutions discussed above, first let us
introduce some notation. For a poset P = ⟨U,⪯⟩ on an arbitrary set U, we denote by ◁ the
(immediate) predecessor relation compatible with ⪯, i.e., u1 ◁ u2 iff u1 ≺ u2 and there is no
u ∈ U such that u1 ≺ u ≺ u2. We can now strengthen the coherence property.

▶ Definition 19. An n-vector of values ξ = {ξu}u∈u ∈ Nn is P-strict, given a poset
P = ⟨u,⪯⟩ on u ∈ Unn, if it is P-coherent and satisfies the inequalities {u > 0}u∈min⪯u ∪
{u1 < u2}u1◁u2

u1,u2∈u .

Thanks to the above restriction on the space of solutions, we can formally state the
second Diophantine decision problem.

▶ Problem 3. Let M(u)>P(u) be an MPI on u ∈ Unn and P = ⟨u,⪯⟩ a poset, where P(u)
is strongly non-negative w.r.t. P. Is there a P-strict Diophantine solution for the MPI?

Consider again the example after Thm. 16. The existence of a simultaneous solution
of the MPI, the linear system, and the set of inequalities {ua1 > ua12 , ua2 > ua12 , ua2 >

ICDT 2025

2:12 Bag Containment of Join-on-Free Queries

ua23 , ua3 > ua23 , ua12 > 0, ua23 > 0} would result in a positive answer to the associated
instance of Prob. 3 and vice versa.

Clearly, the existence of a solution for an MPI cannot generally be inferred by evaluating
the relative order of the degrees of its monomial and polynomial. However, by examining
MPIs of a single unknown, one may observe a strong correlation between this order and
the presence of a solution. This observation, initially employed in [24] for polynomials with
only positive coefficients, is extended here to accommodate the broader spectrum of strictly
non-negative polynomials.

In a one-variable GMPI, when the degree deg(M(u)) of the monomial M(u) is strictly
greater than the positive degree deg+(P(u)) of the polynomial P(u) (i.e., the maximum degree
of its monomials with positive coefficients), a solution must exist. In fact, there is an infinite
continuous range of potential solutions.

▶ Lemma 20. For each GMPI M(v)>P(v) on v∈Un, with deg(M(v))>deg+(P(v)), there
is a value ℓ ∈ R≥1 such that every other value ξ ∈ R with ξ > ℓ is a solution of the GMPI.

The converse is not universally valid, since a solution might exist even when the monomial
has a strictly lower degree than the polynomial. However, by demanding the latter to remain
non-negative after the removal of the unitary form of the leading monomial, such a converse
correlation can be also established. The latter property is intimately connected with the
strongly non-negativeness of the multi-dimensional polynomial.

▶ Lemma 21. If a GMPI M(v) > P(v) on v ∈ Un admits a solution in R≥1 on which the
polynomial P(v)− vdeg+(P(v)) is non-negative, then deg(M(v)) > deg+(P(v)).

The core idea behind the technique of [24] is to initially correlate the solutions ξ of a multi-
dimensional MPI M(u)>P(u) with those ξ of a related one-dimensional GMPI M∗(v)>P∗(v).
This correlation is then used together with the established relationship between solutions and
degrees, to reduce the problem into solving a homogeneous linear system whose coefficients
are the exponents of the original monomial and polynomial. Expanding upon this idea,
we incorporate the additional linear constraints imposed on the unknowns. The additional
strictness requirements play here a pivotal role, enabling the application of the approach in
the current more complex setting.

Let us consider an MPI M(u)>P(u) on the n-unknowns u ∈ Unn, where M(u) = ue ∈
Z[u] and P(u) =

∑m
i=1 αiuei ∈ Z[u]. Moreover, let P = ⟨u,⪯⟩ be a poset on u. We can

then introduce the associated ⟨M(u)>P(u),P⟩-system of (homogeneous linear) inequalities
defined as follows:{

(e − ei)⊺ · u > 0
}αi≥1

i∈[m]
∪

{
u > 0

}
u∈min⪯u

∪
{

u1 < u2

}u1◁u2

u1,u2∈u
.

It is worth noting that the coherence requirements on the solutions of the MPI do not
directly manifest in the structure of the linear system. Indeed, the first part deals with
the relative order between the degrees, while the other two components only enforce the
strictness restrictions. Nevertheless, we show that any solution satisfying the inequalities
{u > 0}u∈min⪯u ∪{u1 < u2}u1◁u2

u1,u2∈u always leads to one satisfying the coherence requirements.
Before presenting the theorem stating the correctness and completeness of the proposed

solution approach, we need to establish a polynomial bound on the representation size of
the potential solution of the linear system, which can be derived from well-known results
from the literature [32, e.g., Corollary 17.1c]. Such a bound is then exploited in the decision
procedure provided at the end of this section.

G. Konstantinidis, F. Mogavero 2:13

An n-vector of values d = {du}u∈u ∈ Nn is s-bit-bounded, for some number s ∈ N, if
size(d) ≜

∑
u∈u (1 + ⌈log2(du + 1)⌉) ≤ s. Also, recall that the facet complexity of a linear

system is the maximum length of the binary encoding of its inequalities, which corresponds
to the length of the binary representations of all rational numbers appearing as coefficients.

▶ Lemma 22. Let M(u) > P(u) be an MPI on u ∈ Unn and P = ⟨u,⪯⟩ a poset. The
⟨M(u)>P(u),P⟩-system of inequalities admits a solution iff it admits a (6ϕn3)-bit-bounded
Diophantine solution, with ϕ its facet complexity.

Summing up, we can formalise the aforementioned reduction of Prob. 3 as follows.

▶ Theorem 23. Let M(u) > P(u) be an MPI on u ∈ Unn and P = ⟨u,⪯⟩ a poset. If the
⟨M(u)>P(u),P⟩-system of inequalities admits a solution then the MPI admits a P-strict
Diophantine solution. Conversely, under the assumption that P(u) is strongly non-negative
w.r.t. P, if the MPI admits a P-strict Diophantine solution then the ⟨M(u)>P(u),P⟩-system
of inequalities admits a (6ϕn3)-sized Diophantine solution, with ϕ its facet complexity.

The high-level idea behind the proof of the above result is as follows. If the ⟨M(u) >

P(u),P⟩-system of inequalities admits a solution, then, by Lemma 22, there exists an integer
solution d ∈ Nn. From this, we build a GMPI M∗(v)>P∗(v) on a single unknown v, using
the same coefficients as the original MPI M(u)>P(u) and exponents derived from d, such
that deg(M∗(v))>deg+(P∗(v)). Now, by Lemma 20, there exists a value ℓ ∈ R≥1 such that
every ξ ∈ R with ξ > ℓ is a solution of this GMPI. From each such ξ, we then construct an
n-dimensional vector ξ ∈ Nn

+ satisfying M(ξ) = M∗(ξ) > P∗(ξ) = P(ξ). In other words, ξ

is a solution. Since ξ can be chosen arbitrarily large, we can guarantee the existence of a
vector ξ (actually, infinitely many) that is P-strict. For the converse direction, the reasoning
is analogous. Starting from a P-strict solution ξ ∈ Nn

+ of the MPI M(u)>P(u), we build
a one-dimensional GMPI M∗(v) > P∗(v), again using the same coefficients as the original
MPI and exponents derived from ξ (which may not necessarily be integers). For this GMPI,
there exists a value ξ ∈ R such that M∗(ξ) = M(ξ) > P(ξ) = P∗(ξ). By construction, the
polynomial P∗(v)−vdeg+(P∗(v)) is non-negative on ξ, since P(u) is strongly non-negative w.r.t.
P. Now, by Lemma 21, deg(M∗(v)) > deg+(P∗(v)). From this, we can derive a solution to
the ⟨M(u)>P(u),P⟩-system of inequalities of suitable size, again invoking Lemma 22.

General Solutions. We can now refocus on Prob. 2. The high-level idea behind the technique
we employ here can be summarised as follows. Each coherent solution ξ to the original MPI
M(u) > P(u) can be condensed into a strict solution ζ of a reduced MPI Mγ(v) > Pγ(v),
obtained from the first by mapping unknowns in u to unknowns in v ⊆ u via a function γ.
Specifically, we merge all unknowns in u that are related by the order and share the same
value in ξ into a single unknown in v. Conversely, every coherent solution ζ for the reduced
MPI can be expanded into a coherent solution ξ of the original MPI by duplicating the value
of an unknown in v across all corresponding unknowns in u. To implement this idea, we
leverage the following concept.

For a poset P = ⟨U,⪯⟩ on an arbitrary set U, a P-collapse γ : U → ({0} ∪ U) is a
function such that (a) it is deflationary, i.e., γ(u)⪯0 u, for all u ∈ U, (b) it is monotone, i.e.,
γ(u1) ⪯0 γ(u2), for all u1, u2 ∈ U with u1 ≺ u2, and (c) all elements of U in the range of γ

are fixpoints of γ itself, i.e., γ(u) = u, for all u ∈ rng(γ) \ {0}.
Given a polynomial Q(u) ∈ Z[u], we denote by Q(u)↾γ the reduced version induced by γ.

To derive this, we initially replace each unknown u in u with the corresponding element γ(u),
yielding Q(u)[u ∈ u/γ(u)]. Subsequently, we simplify the obtained expression by eliminating

ICDT 2025

2:14 Bag Containment of Join-on-Free Queries

all monomials ue[u ∈ u/γ(u)] that reduce to 0 due to an unknown u being mapped to 0
by γ and raised to a non-zero exponent eu. As usual when dealing with the polynomial
ring Z[u], we conventionally assume 00 ≜ 1, thereby preventing cancellation for unknowns u

raised to a zero exponent. An alternative way to define Q(u)↾γ is as follows. For each unitary
monomial ue, if γ(u) = 0 for some u ∈ u with eu ≠ 0, then ue↾γ≜ 0, else ue↾γ≜ ve↾γ , where
v≜ rng(γ)\{0} and (e↾γ)v ≜

∑γ(u)=v
u∈u eu, for all v ∈ v. Then, Q(u)↾γ ≜

∑m
i=1 αiuei↾γ , where

Q(u) =
∑m

i=1 αiuei .
Consider again the MPI Mq(u)>Pp

q(u), the linear inequality system {Ca
q(u)≥0}a∈JqK,

and the 0-cmsem P = ⟨JqK,⪯q⟩, with JqK = {a1, a12, a2, a23, a3}, discussed after Thm. 16.
Moreover, let γ be the function mapping (i) ua2 to ua12 , (ii) ua23 to 0, and (iii) all the other
unknowns uai to themselves. One can easily check that γ is a P-collapse. The reduced
MPI Mq(u)↾γ >Pp

q(u)↾γ is, thus, ua1ua12ua3 > (u2
a1

+ u3
a3

)ua1ua12 , while the reduced linear
system {Ca

q (u)↾γ≥0}a∈JqK is

Ca1
q (u)↾γ = ua1 − ua12 ≥ 0, Ca12

q (u)↾γ = ua12 ≥ 0,

Ca2
q (u)↾γ = 0 ≥ 0, Ca23

q (u)↾γ = 0 ≥ 0, Ca3
q (u)↾γ = ua3 ≥ 0.

It should be clear that the value Q(ξ) of a polynomial Q(u) on an assignment ξ of its
unknowns always coincides with value Qγ(ζ) of its γ-induced version Qγ(v) on the condensed
assignment ζ, as stated below.

▶ Lemma 24. Let P = ⟨u,⪯⟩ be a poset on u ∈ Unn and γ : u → ({0} ∪ u) a P-collapse,
with v ≜ rng(γ) \ {0} ∈ Unk. Moreover, let Q(u) ∈ Z[u] be a polynomial on u and Qγ(v) ≜
Q(u)↾γ its γ-induced version on v. Then, Q(ξ) = Qγ(ζ), for all ξ = {ξu}u∈u ∈ Nn and
ζ = {ζv}v∈v ∈ Nk, with ξu =ζγ(u), if γ(u)∈v, and ξu =0, otherwise.

We can also prove that every coherence constraint Cu
P(u) ≥ 0 imposed on an unknown

u ∈ u within a poset P = ⟨u,⪯⟩ either is trivially satisfied or reduces to a corresponding
constraint Cu

P↾γ
(v) ≥ 0 of the γ-induced poset ⟨U,⪯⟩↾γ ≜⟨rng(γ)\{0},⪯ ∩ (rng(γ)× rng(γ))⟩.

Going back to the above example, by applying the γ-restriction to the 0-cmsem P, we ob-
tain the γ-induced 0-cmsem P↾γ = ⟨{ua1 , ua12 , ua3}, {(ua12 , ua1)}⟩ and the three constraints
Cua1
P↾γ

(v) = ua1 − ua12 ≥ 0, Cua12
P↾γ

(v) = ua12 ≥ 0, and Cua3
P↾γ

(v) = ua3 ≥ 0.

▶ Lemma 25. Let P = ⟨u,⪯⟩ be a poset on u ∈ Unn and γ : u → ({0} ∪ u) a P-collapse,
with v ≜ rng(γ) \ {0} ∈ Unk. Then, Cu

P(u)↾γ =Cu
P↾γ

(v), if u∈v, and Cu
P(u)↾γ =0, otherwise.

Building upon the above results, it becomes quite evident that any P↾γ-coherent solution
ζ = {ζv}v∈v of a γ-induced MPI Mγ(v)>Pγ(v), for some P-collapse γ, always translates to
a P-coherent solution ξ = {ξu}u∈u of the original MPI M(u)>P(u), by just replicating the
value ζv on all unknowns u ∈ u with γ(u) = v.

For the converse direction, however, the situation is more intricate. In principle, given a
P-coherent solution ξ = {ξu}u∈u of the original MPI, we would like to collapse two unknowns
u1 and u2 in u, with u1 ≺ u2 and ξu1 = ξu2 , into the same unknown in v, by defining a
suitable P-collapse γ. Unfortunately, the existence of such a P-collapse is not guaranteed on
arbitrary poset P, due to the potential occurrence of multiple maximal lower bounds for two
elements. This is where the property of a 0-cmsem comes to the rescue. Indeed, by exploiting
the following truncated version of the inclusion/exclusion principle on a meet semilattice, we
can show that there always exists a P-collapse γ aligned with the above requirements.

G. Konstantinidis, F. Mogavero 2:15

▶ Lemma 26. Let P = ⟨u,⪯⟩ be a 0-cmsem on u ∈ Unn and ξ ={ξu}u∈u ∈ Nn a P-coherent
n-vector of values. Then, for all u, u1, u2 ∈ u with u1≺u and u2≺u, if û≜ u1 ∧ u2 ̸= 0 then
Cu
P(ξ) ≤ ξu − ξu1 − ξu2 + ξ

û
else Cu

P(ξ) ≤ ξu − ξu1 − ξu2 .
A reduction from Prob. 2 to Prob. 3 can now be proved.

▶ Theorem 27. Let M(u)>P(u) be an MPI on u ∈ Unn and P = ⟨u,⪯⟩ a poset. If there
exists a P-collapse γ such that the γ-induced MPI M(u)↾γ >P(u)↾γ admits a P↾γ-coherent
Diophantine solution then the original MPI admits a P-coherent Diophantine solution.
Conversely, under the assumption that P is a 0-cmsem, if the original MPI admits a P-
coherent Diophantine solution then there exists a P-collapse γ such that the γ-induced MPI
M(u)↾γ >P(u)↾γ admits a P↾γ-strict Diophantine solution.

Deciding Solutions. To effectively address Prob. 2, we leverage the combination of Thms. 23
and 27 via a ∃∀-alternating polynomial-time algorithm that outputs true iff the problem has
an affirmative answer. We adopt a classic guess-and-check strategy: first guess a potential P-
collapse γ alongside a polynomially-bounded solution d for the induced ⟨Mγ(u)>Pγ(u),P↾γ⟩-
system and then check the correctness of these choices. Consequently, we derive the following
upper bound on the complexity of our Diophantine problem.
▶ Theorem 28. Prob. 2 can be decided in ∃∀-alternating polynomial-time with existential-
guess space polynomial in the number n of unknowns and universal-guess space logarithmic
in maximum between n and the number m of monomials.

6 The Problem Solution

We can finally combine Thms. 16 and 28 to obtain a solution for the bag-set containment
problem of JoFBQs into BCQs. Before doing so, we first need to show that the minimal
unification closure JqK of a containee JoFBQ q equipped with the homomorphic ordering ⪯q

is a 0-cmsem. Then, we prove that the polynomial Pp
q(u) tallying the homomorphisms of

the containing BCQ p is strongly non-negative w.r.t. P. The intuition behind this fact is
that Pp

q(u) represents a sum of positive monomials, where each monomial accounts for the
homomorphisms of an atom in JqK. Consequently, removing a single monomial, even more so
if it is unitary, cannot result in a negative value.
▶ Lemma 29. For every pair (q, p) ∈ JoF- BCP, the following properties hold true: (a) P =
⟨JqK,⪯q⟩ is a 0-cmsem; (b) the polynomial Pp

q(u) is strongly non-negative w.r.t. P.
Since every atom in JqK corresponds to the most general unification of a unifiable subset

of atoms from q, there are n ≤ 2|q| many elements in this set and, thus, so many unknowns
in the vector u ∈ Unn of the MPI and linear constraints of Thm. 16. Moreover, there are
m ≤ 2|q|·|p| many homomorphisms in the set Hom(p, JqK) and, thus, so many monomials
in the polynomial Pp

q(u). Therefore, by applying Thm. 28, we obtain a ∀∃-alternating
exponential-time algorithm with a universal-guess space exponential in |q| and an existential-
guess space polynomial in |q| · |p|. Since the latter guess can be deterministically simulated
in exponential time in |q| · |p|, we obtain a universal exponential-time algorithm, witnessing
the membership of the problem to CoNExpTime, i.e., within the first non-trivial level of
the exponential hierarchy. By relying on Thm. 2, we can extend the result to encompass the
bag-bag containment problem. Furthermore, via Thm. 3, both problems can be addressed,
even when dealing with non-Boolean queries.
▶ Theorem 30. The bag-bag and bag-set containment problems for a join-on-free containee
CQ p against an arbitrary containing CQ q can be solved in CoNExpTime.

ICDT 2025

2:16 Bag Containment of Join-on-Free Queries

7 Discussion

We study a new class of conjunctive queries, namely join-on-free queries (JoFQ), which, to
the best of our knowledge, has not been previously considered in the literature. Specifically,
we establish the decidability of the containment problem of JoFQs into arbitrary CQs, under
both bag-bag/bag-set semantics, proving membership in CoNExpTime. This class seems
to represent the most comprehensive set of containee queries examined against arbitrary
containing ones for which the problem has been studied and solved so far.

The solution strategy adopted in this work can be broken down into two independent, but
synergistic, contributions. On the one hand, we provide a characterisation of the containment
problem through the concept of multicanonical instance, which is, in turn, based on the
notion of minimal unification closure of a JoFQ. This enabled us to reduce the problem
between two queries to a direct comparison of the respective numbers of homomorphisms
towards this instance. In particular, these numbers can be computed via a monomial function,
for the containee query, and a polynomial function, for the containing one, the latter enjoying
the crucial property of strong non-negativeness. On the other hand, we solve a special case of
the Diophantine inequality problem. While in its general form it is known to be undecidable,
we prove the decidability of the problem in the context of monomial-polynomial inequalities
under the proviso of strong non-negativeness of the polynomials.

This work leaves several intriguing directions for future investigation. First, while the
containment problems studied here are known to be NPTime-hard [24], identifying tighter
lower bounds remains an open challenge. Notably, since the withdrawal of the ΠP

2 -hardness
claim by Chaudhuri and Vardi for the general bag containment problem, progress in this
area has stalled, making it an appealing avenue for further exploration. Second, the potential
to improve the CoNExpTime upper-bound of our algorithm remains uncertain. Achieving
decidability within this complexity class is already a significant tour de force, but it is not
yet clear whether the current approach includes redundancies that could be removed to
yield a more efficient algorithm. Finally, our results suggest that the techniques developed
here could generalise to a broader class of queries. Relaxing the join-on-free condition to
permit a restricted form of joins, while ensuring that the minimal unification closure remains
a 0-completable meet semilattice w.r.t. bag-set inclusion, could significantly expand the
applicability of our approach.

At the current state of the art, alongside early studies employing classic notions of
database theory (e.g., [5, 14, 12, 9, 10, 2, 6, 7, 8]), two main strategies have been considered
in the literature to tackle the vanilla version of this difficult problem: one involves restricting
the containing query, while keeping the containee query unrestricted; the other adopts the
dual approach. Both strategies, however, exploit technical tools from different fields. In
the first category, researches such as [25, 17, 18] examine the strong correlation between
the bag-containment problem and the validity of specific information-theory inequalities. In
the second category, instead, we can cast the present article and [24], upon which our work
builds, that investigate the problem in correlation with the solution of specific Diophantine
inequalities. It seems conceivable that a suitable integration of these diverse techniques may
lead to the final solution of this challenging open problem.

Acknowledgements

We would like to thank the anonymous reviewers for their insightful comments (e.g., regarding
the connection with the Möbius inversion formula) that considerably improved the paper.

G. Konstantinidis, F. Mogavero 2:17

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 F.N. Afrati, M. Damigos, and M. Gergatsoulis. Query Containment under Bag and Bag-Set

Semantics. IPL, 110(10):360–369, 2010.
3 R.J. Brachman and H.J. Levesque. Knowledge Representation and Reasoning. Morgan

Kaufmann, 2004.
4 A.K. Chandra and P.M. Merlin. Optimal Implementation of Conjunctive Queries in Relational

Data Bases. In STOC’77, pages 77–90. ACM, 1977.
5 S. Chaudhuri and M.Y. Vardi. Optimization of Real Conjunctive Queries. In PODS’93, pages

59–70. ACM, 1993.
6 R. Chirkova. Equivalence and Minimization of Conjunctive Queries under Combined Semantics.

In ICDT’12, pages 262–273. OpenProceedings.org, 2012.
7 R. Chirkova. Combined-Semantics Equivalence and Minimization of Conjunctive Queries.

TCJ, 57(5):775–795, 2014.
8 R. Chirkova. Combined-Semantics Equivalence of Conjunctive Queries: Decidability and

Tractability Results. JCSS, 82(3):395–465, 2016.
9 S. Cohen. Equivalence of Queries Combining Set and Bag-Set Semantics. In PODS’06, pages

70–79. ACM, 2006.
10 S. Cohen. Equivalence of Queries that are Sensitive to Multiplicities. PVLDB, 18(3):765–785,

2009.
11 M. Davis. Hilbert’s Tenth Problem is Unsolvable. AMM, 80(3):233–269, 1973.
12 S. Grumbach and T. Milo. Towards Tractable Algebras for Bags. JCSS, 52(3):570–588, 1996.
13 H. Grunert and A. Heuer. Query Rewriting by Contract under Privacy Constraints. OJIOT,

4(1):54–69, 2018.
14 Y.E. Ioannidis and R. Ramakrishnan. Containment of Conjunctive Queries: Beyond Relations

as Sets. TODS, 20(3):288–324, 1995.
15 Y.E. Ioannidis and E. Wong. Towards an Algebraic Theory of Recursion. JACM, 38(2):329–381,

1991.
16 T.S. Jayram, P.G. Kolaitis, and E. Vee. The Containment Problem for Real Conjunctive

Queries with Inequalities. In PODS’06, pages 80–89. ACM, 2006.
17 M.A. Khamis, P.G. Kolaitis, H.Q. Ngo, and D. Suciu. Bag Query Containment and Information

Theory. In PODS’20, pages 95–112. ACM, 2020.
18 M.A. Khamis, P.G. Kolaitis, H.Q. Ngo, and D. Suciu. Bag Query Containment and Information

Theory. TODS, 46(3):1–39, 2021.
19 M.A. Khamis, H.Q. Ngo, and A. Rudra. FAQ: Questions Asked Frequently. In PODS’16,

pages 13–28. ACM, 2016.
20 P.G. Kolaitis. The Query Containment Problem: Set Semantics vs. Bag Semantics. In

AMW’13, CEUR-WS 1949, 2013.
21 G. Konstantinidis and J.L. Ambite. Scalable Query Rewriting: A Graph-Based Approach. In

SIGMOD’11, pages 97–108. ACM, 2011.
22 G. Konstantinidis and J.L. Ambite. Scalable Containment for Unions of Conjunctive Queries

under Constraints. In SWIM’13, pages 4:1–8. ACM, 2013.
23 G. Konstantinidis, J. Holt, and A. Chapman. Enabling Personal Consent in Databases.

PVLDB, 15(2):375–387, 2021.
24 G. Konstantinidis and F. Mogavero. Attacking Diophantus: Solving a Special Case of Bag

Containment. In PODS’19, pages 399–413. ACM, 2019.
25 S. Kopparty and B. Rossman. The Homomorphism Domination Exponent. EJC, 32(7):1097–

1114, 2011.
26 A.Y. Levy, A.O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering Queries Using Views. In

PODS’95, pages 95–104. ACM, 1995.
27 A. Machanavajjhala and J. Gehrke. On the Efficiency of Checking Perfect Privacy. In PODS’06,

pages 163–172. ACM, 2006.

ICDT 2025

2:18 Bag Containment of Join-on-Free Queries

28 J. Marcinkowski and M. Orda. Bag Semantics Conjunctive Query Containment. Four Small
Steps Towards Undecidability. PACMMOD, 2(2):103, 2024.

29 Y. Matiyasevich. Hilbert’s 10th Problem. MIT Press, 1993.
30 J. Robinson. Solving Diophantine Equations. In Studies in Logic and the Foundations of

Mathematics, volume 74, pages 63–67. Elsevier, 1973.
31 G. Rota. On the Foundations of Combinatorial Theory I. Theory of Möbius Functions. In

Classic Papers in Combinatorics, volume 2, pages 340–368. Springer, 1964.
32 A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
33 R.P. Stanley. Enumerative Combinatorics: Volume 1. CUP, 2011.

	1 Introduction
	2 Preliminaries
	3 Join-on-Free Query Containment
	4 Counting Homomorphisms
	5 A Diophantine Problem
	6 The Problem Solution
	7 Discussion

