
Model Checking Linear Temporal Properties on
Polyhedral Systems
Massimo Benerecetti #

Università di Napoli Federico II

Marco Faella #

Università di Napoli Federico II

Fabio Mogavero #

Università di Napoli Federico II

Abstract
We study the problem of model checking linear temporal logic formulae on finite trajectories generated
by polyhedral differential inclusions, thus enriching the landscape of models where such specifications
can be effectively verified. Each model in the class comprises a static and a dynamic component.
The static component features a finite set of observables represented by (non-necessarily convex)
polyhedra. The dynamic one is given by a convex polyhedron constraining the dynamics of the
system, by specifying the possible slopes of the trajectories in each time instant. We devise an exact
algorithm that computes a symbolic representation of the region of points that existentially satisfy a
given formula φ, i.e., the points from which there exists a trajectory satisfying φ.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Model Checking, Real-Time Systems, LTLf, RTLf

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.16

Funding PNRR MUR project PE0000013-FAIR and Indam GNCS 2024 project “Certificazione,
Monitoraggio, ed Interpretabilità in Sistemi di Intelligenza Artificiale”

1 Introduction

Formal verification has been a central topic in computer science for decades, and model
checking has emerged as a key technique for this purpose. In this paper, we focus on
continuous-time and infinite-state systems, which are essential for cyber-physical applications
[20]. We represent the state of our systems using a vector of real-valued variables, whose
dynamics are governed by a constant polyhedral inclusion of the type ẋ ∈ F , where F is
a convex polyhedron. Such dynamics correspond to the single-location dynamics of linear
hybrid automata (LHAs) [13]. Whereas reachability in LHAs is undecidable [14], we show in
this paper that model checking a linear temporal property on a single location is a decidable,
albeit challenging, problem.

As specification language, we consider a real-time interpretation of linear temporal logic
on finite traces (Ltlf), that we call Rtlf following Reynolds [22]. Compared to Ltlf (and
Ltl), Rtlf does not include an explicit next operator, which is commonly omitted when
considering continuous time domains, but includes both a strict and non-strict version of
the until operator. In our interpretation, time is real-valued and each atomic proposition
denotes a polyhedral region of the state-space. Hence, users can exploit the familiar syntax
of Ltl to express complex properties involving continuous variables and their relationships.

The polyhedral inclusions that define our trajectories bestow a considerable degree of
flexibility, affording room for behaviours, commonly referred to as Zeno behaviours, which
may lack a plausible physical rationale or clash with the symbolic abstraction adopted in this
paper. To avoid these issues, since our observables are polyhedral regions of the state-space,

© M. Benerecetti, M. Faella, F. Mogavero;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:massimo.benerecetti@unina.it
mailto:marco.faella@unina.it
mailto:fabio.mogavero@unina.it
https://doi.org/10.4230/LIPIcs.TIME.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Model Checking Linear Temporal Properties on Polyhedral Systems

we restrict our attention to trajectories that transition between polyhedra finitely often
within any bounded time interval. We call this notion well behavedness and compare it with
similar notions in the existing literature.

Our main contribution is a symbolic algorithm to determine the set of initial states
from which the system supports a well-behaved trajectory that satisfies a given property, a
problem that we call the existential denotation problem for Rtlf . The algorithm is based on
a translation from Rtlf to Ltlf , followed by the classical automata construction for Ltlf .
Then, the finite-state automaton is used as a guide for a backward symbolic computation of
the existential denotation of the input formula.

ṫ = 1
ȧ ∈ [−1, 1]
ḃ ∈ [−2, 2]

ȧ + ḃ ∈ [−2, 2]

−1 1

−2

−1

1

2

ȧ

ḃ

Figure 1 The flow and its projection on
the (ȧ, ḃ) plane.

The results of the existential denotation prob-
lem can be used in two ways, depending on the in-
terpretation given to the input model. Indeed, the
non-determinism inherent in a polyhedral inclusion
can be meant either in an angelic (i.e., controllable)
or demonic (i.e., uncontrollable) sense. In the first
case, a constraint of the type ẋ ∈ [1, 2] is taken
to mean that the variable x can be steered by the
system to grow with any rate between 1 and 2. In
the second case, the same constraint signals that
the environment may choose any growth rate between 1 and 2. Given a model with angelic
non-determinism, one may use the results in this paper to verify that the system can be
controlled into satisfying a specified property. If instead the non-determinism is meant to
be interpreted as demonic, one will specify an error condition and check from which states
the environment can generate a trajectory that engenders the error. Our work has potential
applications in a variety of domains, including robotics and control systems, and offers new
insights into the analysis of polyhedral systems.
A Motivating Example. Consider a system of two tanks connected with a pump and
holding a liquid. An inlet pours liquid into the first tank at an uncertain and time-varying
rate, which however is known to be contained in [1, 2]. The pump shifts liquid from the
first tank to the second tank at a varying rate contained in [1, 2]. Finally, an outlet extracts
liquid from the second tank at a varying rate contained in [0, 3]. If we represent the level in
the first (resp., second) tank with variable a (resp., b) and we add a clock t to measure the
passage of time, the above constraints lead to the dynamic laws reported in Figure 1.

Notice that the above semantics allows levels to become negative: we guarantee that
this does not happen using the formula φinv = G(a ≥ 0 ∧ b ≥ 0). Suppose that we want to
find the initial states from which the system, within the first 10 time units, can first reach a
configuration where a ≥ b + 1 and later reach another configuration where b ≥ a + 1. This
property is captured by the following formula:

φgap
1 = φinv ∧ (t = 0) ∧ G(t ≤ 10) ∧ F

(
a ≥ b + 1 ∧ F(b ≥ a + 1)

)
.

This example also shows that, despite not directly supporting time bounds on the temporal
operators, Rtlf allows to talk about absolute time, by introducing an extra variable t into
the model to represent time. In Section 6, we show how our algorithm can readily compute
the set of initial points supporting a trajectory that satisfies the above formula, as well as
several variations thereof.
Related Work. Several temporal logics have been proposed in the literature to express
properties of real-time systems. Some proposals enrich classical temporal logic with new
operators specific for real time, like decorating the until operator with time bounds. That is

M. Benerecetti, M. Faella, F. Mogavero 16:3

the case of Mtl [16], Mitl [2], and Stl [18]. Other approaches, including ours, reinterpret
the original Ltl on real time. In particular, Reynolds investigates the validity problem for
Ltl interpreted over real time [22].

The dynamics we support generalise the single-mode (i.e., single-location) dynamics of
timed automata [1] and constant-rate multi-mode systems (MMS) [4], and correspond to
the single-mode dynamics of linear hybrid automata (LHA) [13]. In the case of MMS’s,
reachability is a decidable problem, yet full Ltl model checking is not. Notably, Blondin
et al. have recently delineated a range of decidable syntactic fragments in this context [8].
When it comes to LHAs, even the reachability problem is undecidable [14]. This has not
prevented the development of approximate or incomplete approaches, included in tools like
SpaceEx [12] and NYCS [6].

If we go even higher in expressivity ladder of models for single-mode systems, the
polyhedral inclusion characterising our model can be considered as a special case of an affine
system with controllable inputs (i.e., a dynamics of the type ẋ = Ax + b + Bu where A = 0
and the control input u plays the role of nondeterminism). In that model, a sound but
incomplete synthesis approach for Ltl specifications was proposed [15].
Structure of the Paper. The paper is organised as follows. Section 2 introduces polyhedral
systems and their trajectories, and discusses the notion of well-behavedness and its relationship
with other standard regularity conditions. Section 3 defines the classical (i.e., discrete) and
continuous semantics of Ltlf and Rtlf , respectively. Section 4 provides the technical
framework to discretise trajectories into traces and Rtlf formulae into Ltlf formulae.
Section 5 presents our algorithm for the existential denotation problem, and Section 6
describes the experiments performed on our prototype implementation.

2 Polyhedral Systems, Trajectories, and Signals

We study continuous-time and continuous-state dynamic systems, whose state x ∈ Rn

evolves non-deterministically under a differential inclusion of the type ẋ ∈ Flow, for a fixed
convex polyhedron Flow. In the following, we shall use the symbol R+ to denote the set of
non-negative reals and X to denote the complement of a set X ⊆ Rn.
Polyhedra. A convex polyhedron is the intersection of a finite number of strict or non-strict
half-spaces. A polyhedron is a finite union of convex polyhedra and a polytope is a bounded
convex polyhedron. We denote by Poly(Rn) (resp., CPoly(Rn)) the set of polyhedra (resp.,
convex polyhedra) on Rn. We shall use the letters P, Q to refer to convex polyhedra and
letters A, B, G for general polyhedra, instead. For a polyhedron G, we denote by Patch(G)
its representation as a finite set of convex polyhedra, called the patches of G. Also, cl(P) is
topological closure of P , obtained by replacing all strict half-spaces with non-strict ones.
Atomic propositions. In the rest of the paper, we assume a finite set AP of atomic
proposition symbols. Each atomic proposition p ∈ AP is interpreted as a polyhedron
[p] ∈ Poly(Rn), called its interpretation. That is, [p] is the set of points where p holds. For
a set of atomic propositions α ⊆ AP, we denote with [[α]] the interpretation of the set α,
namely the set of points where all and only the propositions in α hold. That is,

[[α]] =
⋂
p∈α

[p] ∩
⋂

p∈AP\α

[p].

By definition, [[α]] is a polyhedron. Observe that [[{p}]] ⊆ [p] and the inclusion may be strict.
For instance, if [p] = {x ≥ 0} and [q] = {x ≥ 2}, then [[{p}]] = {0 ≤ x < 2}. Moreover, for
any two sets of atomic propositions α1, α2 ⊆ AP, either [[α1]] = [[α2]] or [[α1]] ∩ [[α2]] = ∅.
Hence, the image of 2AP under [[·]] is a partition of Rn into polyhedra.

TIME 2024

16:4 Model Checking Linear Temporal Properties on Polyhedral Systems

Trajectories under polyhedral differential inclusions. We are interested in dynamic
systems that obey a given polyhedral differential inclusion. Therefore, we assume a fixed
convex polyhedron Flow ⊆ Rn called the flow constraint, and we omit it from the notation
whenever possible. We call the pair P = (Flow, [·]) a polyhedral system.

For a number T ∈ R+, we use ⟨0, T] as a shorthand for one of the two right-closed
intervals, either (0, T] or [0, T], with left endpoint 0 and right endpoint T . Given a point
x ∈ Rn, a finite-time trajectory (trajectory from now on) starting from x is a function
f : ⟨0, T]→ Rn, such that: (i) limt→0 f(t) = x, (ii) f is continuous, (iii) f is differentiable
everywhere in its domain except for a finite number of points, (iv) whenever the derivative
ḟ(t) is defined, it holds that ḟ(t) ∈ Flow. When ⟨0, T] = [0, T] (resp., ⟨0, T] = (0, T]) we say
that f is left-closed (resp., left-open). We use Traj(x) to denote the set of all trajectories
starting from x.

The interpretation [·] of the atomic propositions induces a mapping from trajectories to
functions of type ⟨0, T]→ 2AP , called bounded signals [17] (signals from now on), over which
we shall base the semantics of the logics defined in Section 3. Namely, given a trajectory f ,
we denote with σf the signal assigning to each time instant t the set of atomic propositions
that are true at f(t). Formally,

σf (t) ≜ {p ∈ AP | f(t) ∈ [p]}.

For a signal σ and a time t ∈ ⟨0, T], we denote by σ∼t, with ∼∈ {>,≥}, the left-open or
left-closed suffix of σ starting at t defined as follows: σ∼t(t′) = σ(t + t′), for all t′ such that
t′ ∼ 0 and t + t′ ∈ ⟨0, T].

2.1 Well-Behavedness and Finite Variability
A well-behaved trajectory f : ⟨0, T]→ Rn is a trajectory that crosses any hyperplane a finite
number of times, i.e., for all hyperplanes H there is a finite set of times 0 = t0 < t1 < . . . <

tk = T such that, during every open interval (ti, ti+1), the trajectory f lies in the same closed
half-space induced by H. We denote by Trajwb(x) the set of all well-behaved trajectories
starting from a point x ∈ Rn.

Considering the membership in a half-space as an observable, the condition above states
that the truth value of the observable along the trajectory f changes only a finite number
of times in every bounded time interval. This last property is equivalent to the notion of
discrete variation, as observed in [9].

These notions can be compared to classical notion in analysis such as analyticity and
Lipschitz continuity. Recall that a trajectory f is analytic in a point t in its domain if it is
smooth at t and the Taylor’s series of f at t converges to f in some open neighbourhood
of t. Moreover, f is said to be analytic if it is analytic in every point of its domain and
piecewise analytic if it is analytic in every point of its domain except for a finite number.1
The following result follows from Theorem 16 of [9].

▶ Proposition 1. On the set of trajectories, piecewise analyticity implies well-behavedness.

A trajectory f , instead, is Lipschitz continuous on X ⊆ R+ if there exists K ≥ 0 such
that, for all t1, t2 ∈ X,

∥f(t1)− f(t2)∥ ≤ K · |t1 − t2|,

1 Note that this is a slight adaptation of the classical notion to the case of functions defined on a bounded
domain.

M. Benerecetti, M. Faella, F. Mogavero 16:5

where ∥·∥ denotes the Euclidean norm. Moreover, f is locally Lipschitz continuous if for all
t ∈ R+ there exists a neighbourhood of t, where f is Lipschitz continuous.

▶ Proposition 2. On the set of trajectories, Lipschitz continuity and well-behavedness are
incomparable notions.

Next, we provide an alternative characterisation of well-behavedness. A polyhedral
partition of Rn is a finite set of mutually disjoint convex polyhedra whose union is Rn.

▶ Proposition 3. A trajectory is well-behaved iff, for all polyhedral partitions of Rn and all
time instants t ∈ R+, the trajectory changes polyhedron a finite number of times during [0, t].

We say that a signal σ : ⟨0, T] → 2AP has finite variability if it changes its value only
a finite number of times. Formally, this means that there exists a strictly-increasing finite
sequence of time points 0 = t0 < . . . < tk = T and a finite sequence of observables
{αi}k−1

i=0 ⊆ 2AP such that, for all indexes 0 ≤ i < k and time instants t ∈ (ti, ti+1), it holds
true that σ(t) = αi. We call any such sequence of time points τ = {ti}k

i=0 ⊆ R+ a time-slicing
of σ and denote the set of these sequences TS(σ). Note that this set does not depend on
whether the signal is left-open or not, i.e., TS(σ) = TS(σ>0).

As we shall show in the Section 4, the notion of (finite) time-slicing is an essential
component of the solution technique proposed in this paper, which reduces the problem of
checking Rtlf formaulae to that of checking Ltlf formulae interpreted on finite discrete
abstractions of bounded signals. The existence of a time-slicing for a signal as defined above,
however, relies on the finite variability property of that signal, as infinite-variability bounded
signals do not admit finite time-slicing.

An immediate consequence of Proposition 3 is that for any polyhedral system P, all
well-behaved trajectories induce finite variability signals.

▶ Proposition 4. If a trajectory f is well-behaved, then the corresponding signal σf has finite
variability.

In the rest of the paper we shall leave the polyhedral system implicit, consider only
well-behaved trajectories and, therefore, only finite variability signals. The following table
summarises the main semantic notions and their intuitive meaning.

Type Name Role Symbol

⟨0, T] → Rn Trajectory Behaviour of a polyhedral system f

⟨0, T] → 2AP Signal Interpretation of Rtlf σ

{0, 1, . . . , k} → 2AP Trace Interpretation of Ltlf w

{0, 1, . . . , k} → S Discrete run Behaviour of a finite automaton rd

⟨0, T] → S Continuous run Continuous behaviour of a finite automaton rc

⟨0, T] → (Rn × S) Hybrid run Pairing of a trajectory and a continuous run ρ

{0, 1, . . . , k} → R+ Time-slicing Time decomposition of a signal to generate traces τ

Table 1 Main notions used in the paper: three types of trace-like objects (from the most concrete
to the most abstract), three types of runs of an automaton, and the time decomposition of a signal.

3 Linear Temporal Logics

Linear Temporal Logic (Ltl) was introduced by Pnueli to specify and verify properties of
reactive systems [19]. Given a set of atomic propositions AP, an Ltl formula is composed

TIME 2024

16:6 Model Checking Linear Temporal Properties on Polyhedral Systems

of atomic propositions, the Boolean connectives conjunction (∧) and negation (¬), and the
temporal operators next (X) and two flavors of until: strict (U̇) and non-strict (U).

Ltl formulae are built up in the usual way from the above operators and connectives,
according to the following grammar:

φ := p | ¬φ | φ ∧ φ | Xφ | φ U φ | φ U̇ φ,

where p is an atomic proposition in AP. We denote by |φ| the length of formula φ.
The semantics of Ltl is typically given w.r.t. infinite sequences (i.e., words) of sets of

atomic propositions in AP, a.k.a. discrete traces, to capture properties of discrete infinite
computations. Since we are interested in the verification of continuous systems, we shall
also consider a semantics based on signals, in a similar vein to some previous works [22].
In Section 5, we describe how the discrete and the continuous semantics are related, a
connection that we leverage to reduce verification of continuous properties to a combination
of verification of discrete properties and geometric reasoning. Both for the discrete and
the continuous version, we consider the bounded semantic fragments, where formulae are
interpreted over finite words and bounded signals, respectively.
Discrete Semantics. In this paper, we consider the semantic fragment Ltlf [10], where
formulae are interpreted over non-empty finite words w = w0w1 . . . wn of symbols in the
alphabet Σ = 2AP . For all i = 0, . . . , n, we denote by w≥i the suffix of w starting from wi.
The satisfaction relation w |= φ is defined as follows:

• w |= φ, for φ ∈ AP, if and only if φ ∈ w0;
• w |= ¬φ if and only if w |= φ does not hold;
• w |= φ1 ∧ φ2 if and only if w |= φ1 and w |= φ2;
• w |= Xφ if and only if |w| > 1 and w≥1 |= φ;
• w |= φ1 U φ2 if and only if there exists i ≥ 0 such that w≥i |= φ2 and, for all j such that

0 ≤ j < i, it holds w≥j |= φ1;
• w |= φ1 U̇ φ2 if and only if there exists i > 0 such that w≥i |= φ2 and, for all j such that

0 < j < i, it holds w≥j |= φ1.

▶ Theorem 1 ([10]). For all Ltlf formulae φ there exists a finite automaton Aφ that accepts
all and only the models of φ.

Continuous Semantics. As it is customary, Rtlf , the continuous version of Ltlf , is
identified as the fragment without the next-time operator X. The semantics of Rtlf formulae
is given with respect to signals σ : ⟨0, T]→ 2AP in the following way:

• σ |= φ, for φ ∈ AP, if and only if:
+ φ ∈ σ(0), if σ is left-closed, and
+ there exists t′ ∈ ⟨0, T] such that φ ∈ σ(t′′), for all t′′ ∈ (0, t′), otherwise;

• σ |= φ1 U φ2 if and only if there exists t ∈ ⟨0, T] such that σ≥t |= φ2 and σ≥t′ |= φ1, for
all t′ ∈ ⟨0, T] with t′ < t;

• σ |= φ1 U̇ φ2 if and only if there exists 0 < t ≤ T such that σ≥t |= φ2 and σ≥t′ |= φ1, for
all 0 < t′ < t.

While the base case for left-closed signals is standard, we stipulate that a left-open signal
satisfies an atomic proposition p ∈ AP if there exists an initial left-open interval contained
in the domain of the signal, where p is observed.

Note that on a left-open signal the semantics of the operators U and U̇ coincide. Moreover,
unlike in Ltlf where the operators U̇ and U are inter-derivable thanks to the presence of

M. Benerecetti, M. Faella, F. Mogavero 16:7

the operator X, in Rtlf this is not the case and U̇ turns out to be strictly more expressive
than U (a proof of this result can be found in [21]). Indeed, in both Ltlf and Rtlf , we
have that φ1 U φ2 ≡ φ2 ∨ (φ1 ∧ φ1 U̇ φ2) and in Ltlf only it holds, in addition, that
φ1 U̇ φ2 ≡ X(φ1 U φ2). The semantics of Rtlf essentially corresponds to a bounded version
of the logic by the same name from [22], except that we consider both left-open and left-closed
signals and we omit the past operator Since.
The Problem. In this work we are interested in solving the problem of computing the
existential denotation of an Rtlf formula defined as follows.

▶ Definition 1. Given an Rtlf formula φ and a polyhedral system P on the same set of
atomic propositions, the existential denotation of φ on P is the set of points of Rn from
which there exists a well-behaved trajectory whose signal satisfies φ.

Note that a solution to the existential denotation problem also allows us to solve the
model-checking problem, where we ask whether a given point x ∈ Rn is the source of some
trajectory in P whose signal satisfies the formula.

4 Discretisation

To address the model-checking problem for Rtlf , we reduce it to a suitable decision problem
for the discrete version of the logic. Specifically, we show that, for all Rtlf formulae φ on
a set of atomic propositions AP, there exists an Ltlf formula dsc(φ) on the extended set
AP ∪{sing} such that a signal σ satisfies φ iff the discrete traces induced by σ satisfy dsc(φ).
This result is proved at the end of this section as Theorem 2. First, we need to define and
characterise the discrete versions of signals (Section 4.1) and formulae (Section 4.2).

4.1 Discretising Signals
Recall from Section 2.1 that a time-slicing τ = {ti}k

i=0 ∈ TS(σ) of a signal σ decomposes
σ into a finite sequence of slices corresponding to an alternation of singular and open time
intervals. Introduce the function sliceτ

σ : [0, tk]→ {0, . . . , 2k}, associating each time instant
t ∈ [0, tk] with the index of its slice sliceτ

σ(t). Formally:

sliceτ
σ(t) =

{
2i, if t = ti;
2i + 1, if t ∈ (ti, ti+1).

Given a time-slicing τ of a signal σ, we now define the discrete trace trace(σ, τ) by
lumping together in a single object the time instants of each open interval (ti, ti+1) and
inserting between any two such intervals the observables of the singular time point separating
them. We maintain the distinction between open and singular intervals by means of an
accessory atomic proposition sing that holds true in all and only the time points (i.e., singular
intervals) ti of the time-slicing τ . Denote again by αi the set of observables holding true in
the open interval (ti, ti+1). The discretisation trace(σ, τ) is the finite word defined below for
both left-closed and left-open signals. We use trace(σ, τ)i ⊆ AP ∪ {sing} to denote the i-th
symbol of the discrete trace. Formally, for a left-closed signal σ : [0, T]→ 2AP and an index
j ∈ {0, . . . , 2k}, we set:

trace(σ, τ)j ≜

{
σ(ti) ∪ {sing}, if j is even and i = j/2;
αi, if j is odd and i = (j − 1)/2.

TIME 2024

16:8 Model Checking Linear Temporal Properties on Polyhedral Systems

For a left-open signal σ : (0, T]→ 2AP and an index j ∈ {0, . . . , 2k − 1}, we set:

trace(σ, τ)j ≜

{
αi, if j is even and i = j/2;
σ(ti) ∪ {sing}, if j is odd i = (j + 1)/2.

Before continuing with the discretisation of the specification, we state a commutativity
property enjoyed by the composition of the discretisation function with the suffix operation
on signals, time-slicings, and traces. In particular, for some t ≤ T , we define ({ti}k

i=0)≥t ≜
{t′

i}k′

i=0, with k′ ≜ k− l, t′
0 ≜ 0, and t′

i ≜ ti+l−t, for all i ∈ {1, . . . , k′}, where l ∈ {0, 1, . . . , k}
is the maximum index such that tl ≤ t, which also corresponds to

⌊
sliceτ

σ(t)
2

⌋
. Note that, if

τ ∈ TS(σ), then τ≥t ∈ TS(σ≥t) = TS(σ>t).

▶ Lemma 1. Let σ : ⟨0, T]→ 2AP be a signal, τ ∈ TS(σ) one of its time-slicings, t ∈ ⟨0, T]
a time instant in the signal domain, and h = sliceτ

σ(t) the corresponding slice index. Then,
it holds true that:
• trace(σ, τ)≥h = trace(σ≥t, τ≥t), if sing ∈ trace(σ, τ)h;
• trace(σ, τ)≥h = trace(σ>t, τ≥t), otherwise.

In addition, it is immediate to see that a trace of a signal satisfies the following property
concerning the auxiliary sing atomic proposition. In words, (a) singular and open intervals
alternate throughout the trace, (b) the trace must end in a singular interval, and (c) the
trace starts in a singular interval iff the underlying signal is left-closed.

▶ Proposition 5. For a signal σ : ⟨0, T]→ 2AP and a time-slicing τ ∈ TS(σ), it holds that
trace(σ, τ) |= G((sing ↔ X¬sing) ∨ last) ∧ F(last ∧ sing), where last ≜ ¬X⊤. Moreover, σ is
left-closed iff trace(σ, τ) |= sing.

4.2 Discretising Formulae
We can now introduce the required transformation from Rtlf to Ltlf . Intuitively, this
translation exploits the segmentation induced by a time-slicing of a signal to verify whether
the observable changes along the signal actually satisfy the property prescribed by the Rtlf

formula. Formally, we set the following:

dsc(p) ≜ p

dsc(¬φ) ≜ ¬dsc(φ),
dsc(φ1 ∧ φ2) ≜ dsc(φ1) ∧ dsc(φ2),
dsc(φ1 U φ2) ≜ dsc(φ1) U (dsc(φ2) ∧ (dsc(φ1) ∨ sing)),
dsc(φ1 U̇ φ2) ≜ (sing ∧ X dsc(φ1 U φ2)) ∨ (¬sing ∧ dsc(φ1 U φ2)).2

To prove the correctness of the above transformation, we first need to state two properties
enjoyed by the semantics of Rtlf . In the following, we say that a signal σ : ⟨0, T]→ 2AP is
B-uniform, for an interval B ⊆ ⟨0, T], if σ(t) = σ(t′), for all t, t′ ∈ B.

▶ Lemma 2. For all Rtlf formulae φ, signals σ : ⟨0, T]→ 2AP , and open intervals B ⊆ (0, T]
such that σ is B-uniform, the following holds true: σ∼1t1 |= φ iff σ∼2t2 |= φ, for all t1, t2 ∈ B
and ∼1,∼2 ∈ {≥, >}.

Proof. The proof proceeds by structural induction on the Rtlf formula φ.

M. Benerecetti, M. Faella, F. Mogavero 16:9

• [Base case φ = p ∈ AP]. W.l.o.g., let us assume σ∼1t1 |= φ. It is easy to see
that there necessarily exists t ∈ B such that p ∈ σ(t). Indeed, if ∼1 =≥, by the
semantics of atomic propositions on left-closed signals, we can choose t = t1, since
p ∈ σ≥t1(0) = σ(t1). If, ∼1 = >, instead, again by the semantics of atomic propositions,
this time for left-open signals, there exists a non-empty open interval (t1, t′) ⊆ (t1, T] such
that p ∈ σ≥t1(t′′ − t1) = σ(t′′), for all t′′ ∈ (t1, t′). Since, by hypothesis, B is a non-empty
open interval with t1 ∈ B, the intersection B ∩ (t1, t′) is non-empty as well. Therefore,
we can arbitrarily choose t as an element of this intersection. At this point, consider the
left-closed subinterval C ≜ [t2, sup(B)) of B. Due to the B-uniformity of the signal σ, it
holds that p ∈ σ(t′) = σ(t), for all t′ ∈ C. Hence, by using C as witness, it is immediate
to show that σ∼2t2 |= φ, independently from the specific relation ∼2.

• [Inductive case]. The Boolean operators ¬ and ∧ are trivial to deal with, so we focus
on the strict until operator only, i.e., we consider the case φ = φ1 U̇ φ2. W.l.o.g., let us
assume σ∼1t1 |= φ. Independently from the relation ∼1, by definition of the semantics of
the temporal operator U̇, there exists t ∈ (t1, T] such that σ≥t |= φ2 and σ≥t′ |= φ1, for all
t′ ∈ (t1, t). Since, by hypothesis, B is an open interval and t1 ∈ B, the intersection B∩(t1, t)
is necessarily non-empty. Thus, there exists an instant t′ ∈ B such that σ≥t′ |= φ1. So, by
the inductive hypothesis applied to the formula φ1, it holds that σ≥t′ |= φ1, for all t′ ∈ B.
Now, two cases may arise depending on whether t belongs to B as well.

[t < sup(B)]. Since σ≥t |= φ2, by the inductive hypothesis applied to the formula
φ2, it holds that σ≥t′ |= φ2, for all t′ ∈ B. Then, as an immediate consequence, any
t ∈ (t2, sup(B)) satisfies σ≥t |= φ2 and σ≥t′ |= φ1, for all t′ ∈ (t2, t). Hence, σ∼2t2 |= φ

holds, independently from the specific relation ∼2.
[t ≥ sup(B)]. Since t2 ∈ B, it holds that t2 < t. Hence, to prove that σ∼2t2 |= φ, it only
remains to show that σ≥t′ |= φ1, for all t′ ∈ (t2, t). Obviously, the open interval (t2, t)
can be decomposed into the disjoint union of the two adjacent intervals (t2, sup(B))
and [sup(B), t). At this point, the required property clearly follows from the fact that
(t2, sup(B)) ⊂ B and [sup(B), t) ⊂ (t1, t), as φ1 holds true on all points of these two
intervals.

▶ Lemma 3. For all Rtlf formulae φ, signals σ : ⟨0, T]→ 2AP , and time instants t ∈ ⟨0, T],
the following holds true: σ>t |= φ iff there exists a time instant t′ ∈ (t, T] such that σ≥t′′ |= φ,
for all t′′ ∈ (t, t′).

The following theorem, which leverages the above two lemmas, establishes the correctness
of the discretisation and allows us in the next section to reduce verification of Rtlf properties
against signals to verification of Ltlf properties against discrete traces.

▶ Theorem 2. For all Rtlf formulae φ, signals σ, and time-slicings τ ∈ TS(σ), it holds
that σ |= φ iff trace(σ, τ) |= dsc(φ).

Proof. The proof proceeds by structural induction on the formula, where we consider an
arbitrary time-slicing τ = {ti}0≤i≤k of σ.

• [Base case φ = p ∈ AP]. For the base case, we distinguish the two cases of left-
closed and left-open signals. If σ is left-closed, then, by definition of trace(σ, τ), it
holds that trace(σ, τ)0 = σ(0) ∪ {sing}. Hence, being dsc(p) = p, we have σ |= p iff
trace(σ, τ) |= dsc(p). If, on the other hand, σ is left-open, then trace(σ, τ)0 = σ(t), for
every t ∈ (0, t1), since, by definition of time-slicing of σ, the observables are constant in
each open interval (ti, ti+1). Now, σ |= p iff p ∈ σ(t), for all t ∈ (0, t1). It immediately
follows, then, that σ |= p iff trace(σ, τ) |= dsc(p).

TIME 2024

16:10 Model Checking Linear Temporal Properties on Polyhedral Systems

• [Inductive case]. We shall focus on the inductive case where φ = φ1 U̇ φ2, since the
cases of the Boolean operators are trivial,while the case for U is essentially a simplified
version of U̇. In the following, let ζ ≜ dsc(φ1 U φ2).

For the first direction of the equivalence, let us consider the case of a left-closed sig-
nal σ : [0, T] → 2AP and assume σ |= φ1 U̇ φ2. Then, by the semantics, there is
a t ∈ (0, T] with σ≥t |= φ2 and, for all t′ ∈ (0, t), it holds σ≥t′ |= φ1. Being
σ left-closed, it holds that sing ∈ trace(σ, τ)0, hence, we only need to show that
trace(σ, τ)≥0 |= Xζ, i.e., trace(σ, τ)≥1 |= dsc(φ1) U (dsc(φ2) ∧ (dsc(φ1) ∨ sing)), by
definition of dsc(φ1 U φ2). We have two more cases, depending on whether t belongs
to the time-slicing τ or is contained in one of its open intervals. If sliceτ

σ(t) belongs
to {ti}0≤i≤k, let j be the position in the discrete trace corresponding to the instant t,
i.e., j ≜ sliceτ

σ(t) > 0. Then, sing ∈ trace(σ, τ)j and trace(σ≥t, τ≥t) = trace(σ, τ)≥j ,
by Lemma 1. By the inductive hypothesis, trace(σ≥t, τ≥t) |= dsc(φ2) and, hence, we
obtain trace(σ, τ)≥j |= dsc(φ2) ∧ sing. If, on the other hand, t ∈ (ti, ti+1), for some
index 0 ≤ i < k, then σ is clearly B-uniform, if we take B = (ti, t] ⊂ (ti, ti+1). Hence,
by Lemma 2, we have σ≥t |= φ2, for all t ∈ B and, by Lemma 3 and the fact that
inf(B) = ti, we conclude σ>ti |= φ2. Taking j ≜ sliceτ

σ(t) = sliceτ
σ(ti) + 1, we have

that sing ̸∈ trace(σ, τ)j and trace(σ>ti
, τ≥ti

) = trace(σ, τ)≥j , by Lemma 1. By applying
the inductive hypothesis, we obtain trace(σ>ti , τ≥ti) |= dsc(φ2). In this case, we know
from the assumption that σ≥t′ |= φ1, for all ti < t′ < t. Then, by applying again
Lemma 2 and Lemma 3, we obtain that trace(σ>ti , τ≥ti) |= dsc(φ1). Thus, we can
conclude trace(σ, τ)≥j |= dsc(φ2) ∧ dsc(φ1). Regardless of the case, we have obtained
that trace(σ, τ)≥j |= dsc(φ2) ∧ (dsc(φ1) ∨ sing). Let us now consider any t′ ∈ J, where
J = (0, ti), if t = ti, and J = (0, ti], if t ∈ (ti, ti+1), for some index 0 ≤ i < k. We have two
cases, depending on whether t′ = tj or t′ ∈ (tj , tj+1), for some 0 < j < i. By applying to t′

the same reasoning we applied to t above, using the inductive hypothesis and Lemmas 1, 2,
and 3, we obtain that trace(σ, τ)≥j |= dsc(φ1), for j = sliceτ

σ(t′). Since, in addition,
{sliceτ

σ(t′) | t′ ∈ J} = {1, . . . , j − 1}, we can conclude that trace(σ, τ)≥j |= dsc(φ1),
for all 1 ≤ j < j. Together with trace(σ, τ)≥j |= dsc(φ2) ∧ (dsc(φ1) ∨ sing), this
gives us trace(σ, τ)≥1 |= dsc(φ1) U̇ (dsc(φ2) ∧ (dsc(φ1) ∨ sing)), which, in turn, implies
trace(σ, τ) |= sing ∧ X(dsc(φ1) U̇ dsc(φ2) ∧ (dsc(φ1) ∨ sing)), since sing ∈ trace(σ, τ)0
in this case. Hence, trace(σ, τ) |= sing ∧ Xζ and, finally, trace(σ, τ) |= dsc(φ1 U̇ φ2) as
required.
For the other direction of the equivalence, assume trace(σ, τ) |= dsc(φ1 U̇ φ2). Since we are
considering a left-closed signal σ, we have sing ∈ trace(σ, τ)0 and, therefore, trace(σ, τ) |=
(sing ∧ Xζ). As a consequence, trace(σ, τ)≥1 |= dsc(φ1) U (dsc(φ2) ∧ (dsc(φ1) ∨ sing)).
By the semantics of U, there exists an index j ≥ 1 such that trace(σ, τ)≥j |= (dsc(φ2) ∧
(dsc(φ1) ∨ sing)) and trace(σ, τ)≥z |= dsc(φ1), for all 1 ≤ z < j. We have two cases, de-
pending on whether trace(σ, τ)j contains the proposition sing or not. If sing ∈ trace(σ, τ)j ,
then trace(σ, τ)≥j |= dsc(φ2) ∧ sing and j = sliceτ

σ(ti), for some 0 < i ≤ k. By Lemma 1,
trace(σ, τ)≥j = trace(σ≥ti

, τ≥ti
). Therefore, trace(σ≥ti

, τ≥ti
) |= dsc(φ2). By the in-

ductive hypothesis, then, σ≥ti |= φ2. For the other case, sing ̸∈ trace(σ, τ)j , hence,
trace(σ, τ)≥j |= dsc(φ2) ∧ dsc(φ2) and j = sliceτ

σ(t), for all t ∈ (ti, ti+1) and some
0 ≤ i < k. For all such t, then, we obtain trace(σ, τ)≥j = trace(σ>t, τ≥t), thanks to
Lemma 1 and, then, also trace(σ>t, τ≥t) |= dsc(φ2) ∧ dsc(φ2). By the inductive hypo-
thesis, it holds σ>t |= φ2 ∧ φ2, for each such t. Lemma 2, then, gives us σ≥t |= φ2 ∧ φ2,
for all t ∈ (ti, ti+1). Now, take any t′ ∈ J, where J = (0, ti), if sing ∈ trace(σ, τ)j , and
J = (0, ti], otherwise. Clearly, sliceτ

σ(t′) ∈ {1, . . . , j−1} and we have two cases, depending

M. Benerecetti, M. Faella, F. Mogavero 16:11

on whether t′ is an element of τ or lies in one of its open intervals. In the first case,
let tz ≜ t′ and z ≜ sliceτ

σ(tz) < j. Since trace(σ, τ)≥z |= dsc(φ1) and, by Lemma 1,
trace(σ, τ)≥z = trace(σ≥tz

, τ≥tz
), we conclude trace(σ≥tz

, τ≥tz
) |= dsc(φ1) and, by the

inductive hypothesis, also σ≥tz |= φ1. If, on the other hand, t′ ∈ (tl, tl+1), for some l, let us
set z ≜ sliceτ

σ(t′) < j. Lemma 1 in this case gives us trace(σ, τ)≥z = trace(σ>t′ , τ≥t′). We
know that trace(σ, τ)≥z |= dsc(φ1), hence, trace(σ>t′ , τ≥t′) |= dsc(φ1). By the inductive
hypothesis, σ>t′ |= φ1 and, by Lemma 2, also σ≥t′ |= φ1. Putting everything together,
we have shown that there is a time t ∈ (0, T] such that σ≥t |= φ2 and σ≥t′ |= φ1, for all
t′ ∈ (0, t], which coincides with the semantic condition for σ |= φ1 U̇ φ2.
The proof of the inductive case when the signal σ is left-open is essentially the same, except
that the first letter trace(σ, τ)0 of trace(σ, τ) does not contain sing, as it corresponds
to the first open interval (t0, t1) of the time-slicing, and that dsc(φ1 U̇ φ2) reduces to
¬sing ∧ ζ in this case.

In conclusion, as an immediate corollary of the above result, we have the following
theorem, where with every Rtlf formula φ we associate the Ltlf formula

φ̂ ≜ dsc(φ) ∧ sing ∧ G((sing ↔ X¬sing) ∨ last) ∧ F(last ∧ sing) . (1)

▶ Theorem 3. For all Rtlf formulae φ, left-closed signals σ, and time-slicings τ ∈ TS(σ),
it holds that σ |= φ iff trace(σ, τ) |= φ̂.

5 Model Checking Rtlf on Polyhedral Systems

In this section, we describe the algorithm that solves the existential denotation problem for
Rtlf on polyhedral systems. Unless differently specified, we consider a fixed Rtlf formula
φ over the set of atomic propositions AP, and a fixed polyhedral system P on AP. Before
describing the algorithm itself, we introduce two auxiliary operators on polyhedra.

5.1 The Basic Operators
The algorithm presented in Section 5.3 (Algorithm 1) requires a function reach♭(A, B) that
takes as arguments a possibly non-convex polyhedron A and a convex polyhedron B, and
identifies the set of points of A that can reach B while staying in A ∪B. The ♭ superscript
can be either 0 or +, corresponding to different timing constraints: a point from A belongs to
reach0(A, B) if it can immediately enter into B, whereas it belongs to reach+(A, B) if it can
enter into B after a positive delay. Formally, for all polyhedra A and convex polyhedra B:

reach0(A, B) ≜
{

x ∈ A | ∃f ∈ Trajwb(x), t > 0 . ∀t′ ∈ (0, t] : f(t′) ∈ B
}

;
reach+(A, B) ≜

{
x ∈ A | ∃f ∈ Trajwb(x), t > 0 : f(t) ∈ B and ∀t′ ∈ (0, t) : f(t′) ∈ A

}
.

Moreover, we need to split the result of reach♭(A, B), which is a general polyhedron, into
convex polyhedra, each contained in one of the patches of A. To this aim, we introduce the
following split function. For all polyhedra A and A′ ⊆ A, the function split(A′, A) returns
a set of pairs {(Pi, Xi)}i=1,...,n such that: (i) Pi and Xi are convex polyhedra such that
Xi ⊆ Pi, (ii) each Pi is one of the patches of A, and (iii) A′ is the union of the Xi’s. It is
straightforward to implement the function split using Boolean operations on polyhedra.
Computing the reach operators. We now show how to compute the value of reach♭ with
a finite number of geometric operations. First, define the positive pre-flow P↙>0 of a convex
polyhedron P as the set of points that can reach P after a positive delay. Formally:

P↙>0 ≜
{

x ∈ Rn | ∃d ∈ Flow, t > 0 : x + d · t ∈ P
}

.

TIME 2024

16:12 Model Checking Linear Temporal Properties on Polyhedral Systems

Lemma 4 below deals with reach0, whereas Lemma 5 provides an algorithm for reach+. Their
proofs can be found in Appendix A.

▶ Lemma 4. For all polyhedra A and convex polyhedra B the following holds:

reach0(A, B) = A ∩ cl(B) ∩B↙>0 .

When it comes to computing reach+, we shall make use of the May Reach While Avoiding
operator RWAm(Y, Z), that collects the points from which some admissible trajectory can
reach a point in the set Y while avoiding all the points in the set Z. The operator is formally
defined as follows:

RWAm(Y, Z) ≜ {x ∈ Rn | ∃f ∈ Trajwb(x), t ≥ 0 : f(t) ∈ Y and ∀t′ ∈ [0, t) : f(t′) ∈ Y ∪Z}.

An algorithm for computing RWAm using symbolic operations on polyhedra is presented in
[7]. The following lemma formalises the connection between RWAm and reach+.

▶ Lemma 5. For all polyhedra A and convex polyhedra B the following holds:

reach+(A, B) =
⋃

P ∈Patch(A)

RWAm(TP , A), where TP ≜ P ∩ (cl(P) ∩B)↙>0 .

As far as the computational complexity is concerned, first notice that the implementation
of the algorithm is based on symbolic operations on polyhedra, whose complexity is already
exponential in the worst case. A loose measure of complexity can be obtained by counting
the number of symbolic operations involved.

The operator reach0 involves a constant number of geometric operations, specifically
intersections of polyhedra, closure operations and positive time-elapse [5]. The computation
of reach+(A, B), instead, requires at most |Patch(A)| calls to RWAm. An analysis of the
algorithm for RWAm (see Theorem 3 in [7]) shows that computing RWAm(Y, Z) requires at
most k ·mO(m) symbolic operations, where k and m are, respectively, the number of convex
patches of Y and Z. The analysis also shows that the number of patches of the output
cannot excede mO(m). Summarising, reach+(A, B) requires at most mO(m) operations, with
m the number of convex patches of A, since B is a single patch, and its output contains at
most mO(m) patches.

5.2 The Finite Automaton
Our algorithm works on a finite automaton that checks the satisfaction of φ, while ensuring
a number of extra properties. The automaton is obtained by applying the classic Ltlf -to-
automata construction to the formula φ̂ defined in (1).

Let Aφ̂ = (S, δ, λ, S0, SF) be the finite automaton corresponding to φ̂, according to
Theorem 1. Recall that λ labels each state in S with a subset of ÂP = AP ∪ {sing}.
For convenience, we write [[s]] for [[λ(s)]] to denote the polyhedron interpreting the set of
propositions labelling s.

We assume w.l.o.g. that Aφ̂ satisfies the following properties. Properties (a) and (c)
are directly encoded in φ̂, while property (b) is enforced via a simple modification of the
automaton.

▶ Proposition 6. The finite automaton Aφ̂ satisfies the following properties:

(a) The initial states are labelled with sing.

M. Benerecetti, M. Faella, F. Mogavero 16:13

(b) The initial states have no predecessors.
(c) The underlying graph is bipartite in (Ssing, Sopen), where Ssing is the set of all states

labelled with sing, while Sopen is its complement.

We denote by Rund(f) the set of all initial runs of Aφ̂ on the discrete traces of f . For a
trajectory f and a time slicing τ = {ti}k

i=0 ∈ TS(σf), let w be the corresponding discrete
trace and rd one of the runs of Aφ̂ on w. We define the continuous run rc for rd and τ as
follows:

rc(t) =
{

rd(2 · i) if t = ti, for some i,

rd(2 · i + 1) if t ∈ (ti, ti+1), for some i.

We denote with Runc(f) the set of continuous runs induced by f as just described.
Moreover, we define the notion of hybrid run as the function ρ = λt . (f(t), rc(t)) pairing

a trajectory with one of its continuous runs. Let HRun(x) be the set of hybrid runs (f, rc),
where f ∈ Trajwb(x) and rc ∈ Runc(f).

5.3 The Algorithm
We now describe the main step in the procedure to solve the existential denotation problem,
expressed in pseudo-code as the function ∃Denot(·) in Algorithm 1. Theorem 4 at the end of
this section describes the top-level invocations that start the process, which begins from a
final state of the automaton and then works recursively backward towards the initial states.

Roughly speaking, a call to ∃Denot(s, P, X, V) computes the points from where there
exists a hybrid run of the automaton ending in the state s and in a point in the convex
polyhedron X. Moreover, X is assumed to be contained in P , and P must be a patch of
[[s]]. The role of the parameter V is explained below. In the following, for a state s ∈ S, let
type(s) = 0, if sing ∈ λ(s), and type(s) = +, otherwise.

To ensure termination, the algorithm keeps track of the patches associated with open
states in Sopen that have been visited in the current sequence of recursive calls. Those are
the patches in which the induced trajectory must spend some positive amount of time. This
information is kept in the map V , that associates with each state s the set of patches of [[s]]
already encountered by the algorithm.

When s is an initial state, the result is clearly X itself (Line 1). Otherwise, an updated
map V ′ is computed, where the patch P is added to V (s) if s is an open state (Line 3).
The for loop at Lines 4–9 iterates over the incoming edges of s. For each such edge (s′, s),
Line 5 sets A to the region of [[s′]] that has not been already visited. Line 6 computes the
set of points of A that can reach some point in X, either leaving A immediately, if s′ is
a singular state (type(s) = 0), or lingering in A for some time, if it is open (type(s) = +).
Line 7 splits the resulting set A′ into a set of distinct pairs (Qi, Yi), where Yi is the maximal
convex polyhedron contained in A′ and in the patch Qi of A. Each such pair (Qi, Yi), then,
gives rise to a recursive call on the state s′ with targets Yi and Qi at Line 9. The results of
all such calls are gathered in Result, which is returned at Line 10.

The following lemmas state the characteristic properties of the function ∃Denot, namely
termination (Lemma 6), and soundness and completeness (Lemma 7).

▶ Lemma 6. For all convex polyhedra P and X, such that P ∈ Patch([[s]]) and X ⊆ P ,
and maps V : S →s 2Patch([[s]]), the call to ∃Denot(s, P, X, V) terminates after at most
|S|O(m·|S|) ·mO(m2·|S|) symbolic operations on polyhedra, with m the maximum number of
patches in the denotation of any state.

TIME 2024

16:14 Model Checking Linear Temporal Properties on Polyhedral Systems

Algorithm 1 Function ∃Denot(s, P, X, V). For simplicity, we omit from the notation two
implicit arguments: the finite automaton Aφ̂ = (S, δ, λ, S0, SF) and the polyhedral system P.

input : s ∈ S;
P : convex polyhedron in Patch([[s]]);
X: convex polyhedron included in P ;
V : map from states u ∈ S to a subset of the patches of [[u]];

output : A polyhedron in Rn

1 if s ∈ S0 then return X

2 Result ← ∅
3 V ′ ← if s ∈ Ssing then V else V [s 7→ V (s) ∪ {P}]
4 foreach state s′ ∈ S such that (s′, s) ∈ δ do
5 A← [[s′]] \V (s′)
6 A′ ← reachtype(s′)(A, X)
7 {(Q1, Y1), . . . , (Qn, Yn)} ← split(A′, A)
8 for i = 1, . . . , n do
9 Result← Result ∪ ∃Denot(s′, Qi, Yi, V ′)

10 return Result

Proof. First, we prove that the recursion depth is bounded by 1 + 2 ·
∑

s∈S |Patch([[s]])|. Let
χ = (s0, P0), (s1, P1), . . . be the sequence of first and second arguments in a stack of recursive
calls to ∃Denot, with (s0, P0) being the bottom of the stack. Recall that by design si ∈ S

and Pi is one of the patches of [[si]]. Considere a pair (si, Pi) with si ∈ Sopen. The recursive
call issued from a state si at recursion level i adds the patch Pi to V (si) (Line 3). From that
point on, i.e., at recursion levels j > i, if state s′ considered at Line 4 is si, the assignment
at Line 5 ensures that the patch Pi is not passed to the next recursive call. Hence, either
sj ≠ si or Pj ̸= Pi. Equivalently, the pair (si, Pi), cannot occur again in the sequence χ. By
the generality of (si, Pi), we obtain that the sequence χ contains no duplicate pairs whose
state is in Sopen. Since states in χ strictly alternate between Sopen and Ssing, this proves
the bound on the recursion depth. Termination follows from the fact that the number of
recursive calls at each level is plainly finite. As to the bound on the symbolic operations,
observe that, since the output of reach+ contains at most mO(m) patches and the loop at
Line 4 iterates on the states of the automaton, the branching degree of the recursion tree of
the algorithm is bounded by |S| ·mO(m). Its depth, instead, is bounded by 1 + 2 ·m · |S| as
shown above. Hence, the overall number of symbolic operations required by algorithm is
bounded by |S|O(m·|S|) ·mO(m2·|S|).

A hybrid run ρ, with time-slicing {ti}k
i=0, ends in the pair (X, s), for a set of points

X ⊆ Rn and a state s ∈ S, if either s ∈ Ssing and ρ is in (X, s) at the last instant of time in
its domain, or s ∈ Sopen and ρ resides in (X, s) for some final open time interval bounded by
tk. Formally:

if s ∈ Ssing, then ρ(tk) ∈ X × {s};
otherwise, there exists t∗ ∈ (tk−1, tk) such that ρ(t) ∈ X × {s}, for all t ∈ [t∗, tk).

Moreover, we denote by Visited(ρ) the set of pairs (P, s), composed of a patch P ∈ Patch([[s]])
and a state s, traversed by ρ at any time. We say that a hybrid run ρ avoids a pair (P, s)
if (P, s) ̸∈ Visited(ρ). This notion of avoidance generalises to pairs (A, s), with A a set of

M. Benerecetti, M. Faella, F. Mogavero 16:15

patches, and to sets of such pairs, in the obvious way.
The following lemma shows that for every hybrid run ρ there exists a similar hybrid run

ρ′′ that crosses a given pair (P, s), with s ∈ Sopen, at most once.

▶ Lemma 7. For all states s ∈ S, convex polyhedra P ∈ Patch([[s]]) and X ⊆ P , and maps
V : S →s 2Patch([[s]]) such that P ̸∈ V (s), we have that ∃Denot(s, P, X, V) returns the set of
all points x from which there is a hybrid run ρ ∈ HRun(x) such that: (a) ρ ends in (X, s);
(b) ρ avoids V ; (c) if s ∈ Sopen, then ρ avoids (P, s), except for the last slice.

The following theorem describes the initial arguments required by Algorithm 1 to solve
the existential denotation problem.

▶ Theorem 4. For all Rtlf formulas φ and polyhedral systems P on the same set of atomic
propositions, let φ̂ be the corresponding Ltlf formula, Aφ̂ be the finite automaton for φ̂, and

X =
⋃

s∈SF

⋃
P ∈Patch([[s]])

∃Denot(s, P, P, ∅).

Then, X is the set of points from which there exists a trajectory that satisfies φ.

Proof. Assume there exists a trajectory f from point x that satisfies φ, i.e., x = f(0) and
σf |= φ. Let us pick an arbitrary τ = {ti}0≤i≤k in TS(σf) and let y ≜ f(tk). Then, by
Theorem 3, trace(σf , τ) |= φ̂. By definition of Aφ̂, there exists an accepting run r ∈ Runs(Aφ̂)
for trace(σf , τ) that ends in some final state s ∈ SF . Let α be the last symbol of trace(σf , τ),
then y belongs to some patch P of [[sF]] = [[α]]. Let now ρ = (f, rc) be the hybrid run from x

whose second component rc is the continuous run of r and τ . Clearly, ρ ends in (P, sF), hence
it satisfies condition (a) of the statement of Lemma 7 (conditions (b) and (c) hold trivially
for ρ). Therefore, Lemma 7 ensures that x ∈ ∃Denot(s, P, P, ∅) and the thesis follows.

For the other direction, let x be a point in ∃Denot(s, P, P, ∅), for some s ∈ SF and
P ∈ Patch([[s]]). By Lemma 7, there exists a hybrid run ρ = (f, rc) from x that ends in (P, s),
where P is a patch of [[s]] and rc is a continuous run of some discrete run r ∈ Runs(Aφ̂)
and some time-splitting τ for f . The run r is accepting since it ends in the same final state
s ∈ SF as rc and it accepts the word trace(σf , τ). This means that trace(σf , τ) |= φ̂ and
Theorem 3, then, ensures that σf |= φ.

6 Experiments

In this section, we report on the experiments performed with our implementation, which is
based on Parma Polyhedral Library [5] as the underlying engine for the symbolic manipulation
of polyhedra. Our prototype implementation starts from an Rtlf formula φ and computes
its discretisation φ̂ according to Equation (1). This formula is translated into standard Ltl
(see [10]) in order to obtain a non-deterministic Büchi automaton recognising its models using
Spot [11]. The NBA is then turned into an NFA A recognising the finite traces satisfying φ̂.
The obtained automaton, together with the polyhedral system providing the flow constraints
and the polyhedral denotations of the atomic propositions of φ, are finally fed to ∃Denot
(Algorithm 1).

We ran some experiments based on the two-tank model described in the introduction.
The experiments consist of two families of Rtlf properties, called φgap

k and φnogap
k , of the

following form:

φ⋆
k ≜ G inv ∧ t0 ∧ G tmax ∧ F

(
p ∧ F

(
q ∧ · · · ∧ F

(
p ∧ Fq

)))︸ ︷︷ ︸
k times

TIME 2024

16:16 Model Checking Linear Temporal Properties on Polyhedral Systems

where k ≥ 1, ⋆ ∈ {gap, nogap}, and the interpretations of the atomic propositions is reported
in the following table:

[p] [q] [inv] [t0] [tmax]
φgap

k a ≥ b + 1 b ≥ a + 1 a ≥ 0 ∧ b ≥ 0 t = 0 t ≤ 10
φnogap

k a > b b > a a ≥ 0 ∧ b ≥ 0 t = 0 t ≤ 10

Both families require a trajectory that satisfies the invariant inv, starts at time t = 0
(represented by the proposition t0) and ends at time 10 (enforced by the formula G tmax), and
alternates k times between the propositions p and q. The only difference between the two
families is in the polyhedral interpretations [p] and [q] of the atomic propositions p and q.

From a semantic standpoint, the first family φgap
k requires a trajectory to alternate k

times between two disjunct and non-adjacent half-spaces. Since the flow constraint is a
bounded (convex) polyhedron, the intensities of the derivatives are bounded, hence there is a
minimum amount of time that any trajectory, reaching a point of the half-space a ≥ b + 1,
requires to reach the half-space b ≥ a + 1. As a consequence, the number of alternations
possible from different points may differ. The further away from the border of the half-spaces
a point is, the fewer alternations are possible.

In the second family φnogap
k , instead, the two half-spaces between which to alternate are

adjacent. Therefore, no minimum time is needed to move from one to the other. This means
that, if a trajectory can reach a > b and, from there, also reach b > a, then it may keep
alternating between the two an arbitrary number of times.

a
5 10 15 20 25 30 35 40

b

5

10

15

20

25

30

35

40

k = 1

k
=

1

k = 2

k
=

2

k = 3

k
=

3

k = 4

k
=

4

k = 5

k
=

5

k = 6

k
=

6

k = 7

k
=

7

k = 8

k
=

8

k = 9

k
=

9

k = 10

k
=

10

a ≥ b + 1

b ≥ a + 1

(a) Points having a trajectory satisfying
φgap

k , for k ∈ {1, . . . , 10}.

a
5 10 15 20 25 30 35 40

b

5

10

15

20

25

30

35

40

a > b

b > a

(b) Points having a trajectory satisfying
φnogap

k , for k ∈ N.

Figure 2 The results of the experiments for the two families of Rtlf properties.
Figure 2 shows the denotations of the two families of formulas, both limited to the cross

section for t = 0. In particular, Figure 2a shows the different regions of points satisfying the
Rtlf property indexed with the corresponding value of k. As explained above, the bigger
the value of k, the smaller the region of points. For example, only the points in the dark blue
region in the middle satisfy φgap

10 , whereas the points satisfying φgap
9 additionally include

the two light blue strips. Observe also that the region of points in the half-space a ≥ b + 1
satisfying the property φgap

k is bigger than the region of points in the half-space b ≥ a + 1
that satisfies the same property. This is due to the fact that a trajectory from the points in
latter region must spend additional time to first reach the half-space a ≥ b + 1, leaving less
time, with respect to the points in the former region, to perform the alternations. Figure 2b,
instead, is perfectly symmetric and shows that all the points from where one can reach
the diagonal a = b in the allotted time can alternate between the two half-spaces k times,
regardless of the value of k.

M. Benerecetti, M. Faella, F. Mogavero 16:17

References
1 R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235,

1994.
2 R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. Journal of the

ACM (JACM), 43(1):116–146, 1996.
3 R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.

IEEE Trans. Softw. Eng., 22:181–201, March 1996.
4 R. Alur, A. Trivedi, and D. Wojtczak. Optimal scheduling for constant-rate multi-mode systems.

In Proceedings of the 15th ACM international conference on Hybrid Systems: Computation
and Control, pages 75–84, 2012.

5 R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1–2):3–21, 2008.

6 M. Benerecetti and M. Faella. Automatic synthesis of switching controllers for linear hybrid
systems: Reachability control. ACM Trans. on Embedded Computing Systems, 16(4), 2017.

7 M. Benerecetti, M. Faella, and S. Minopoli. Automatic synthesis of switching controllers for
linear hybrid systems: Safety control. Theoretical Computer Science, 493:116–138, 2013.

8 M. Blondin, P. Offtermatt, and A. Sansfaçon-Buchanan. Verifying linear temporal specifications
of constant-rate multi-mode systems. In LICS, pages 1–13, 2023.

9 E. Davis. Infinite loops in finite time: Some observations. In Proc. of the 3rd Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR’92). Cambridge, MA, USA,
October 25-29, 1992, pages 47–58. Morgan Kaufmann, 1992.

10 G. De Giacomo and M.Y. Vardi. Linear temporal logic and linear dynamic logic on finite traces.
In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 854–860. IJCAI/AAAI,
2013.

11 A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu. Spot 2.0—a
framework for ltl and-automata manipulation. In International Symposium on Automated
Technology for Verification and Analysis, pages 122–129. Springer, 2016.

12 G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems. In CAV 11: Proc.
of 23rd Conf. on Computer Aided Verification, pages 379–395, 2011.

13 T.A. Henzinger. The theory of hybrid automata. In 11th IEEE Symp. Logic in Comp. Sci.,
pages 278–292, 1996.

14 T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid
automata? J. of Computer and System Sciences, 57(1):94 – 124, 1998.

15 M. Kloetzer and C. Belta. A fully automated framework for control of linear systems from
temporal logic specifications. IEEE Transactions on Automatic Control, 53(1):287–297, 2008.

16 R. Koymans. Specifying real-time properties with metric temporal logic. Real-time systems,
2(4):255–299, 1990.

17 O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 152–166.
Springer, 2004.

18 O. Maler, D. Nickovic, and A. Pnueli. Checking temporal properties of discrete, timed
and continuous behaviors. Pillars of Computer Science: Essays Dedicated to Boris (Boaz)
Trakhtenbrot on the Occasion of His 85th Birthday, pages 475–505, 2008.

19 A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
46–57. IEEE Computer Society, 1977.

20 R. Poovendran. Cyber–physical systems: Close encounters between two parallel worlds.
Proceedings of the IEEE, 98(8):1363–1366, 2010.

TIME 2024

16:18 Model Checking Linear Temporal Properties on Polyhedral Systems

21 M. Reynolds. The complexity of the temporal logic with “until” over general linear time.
Journal of Computer and System Sciences, 66(2):393–426, 2003.

22 M. Reynolds. The complexity of temporal logic over the reals. Annals of Pure and Applied
Logic, 161(8):1063–1096, 2010.

M. Benerecetti, M. Faella, F. Mogavero 16:19

A Additional Proofs

▶ Proposition 2. On the set of trajectories, Lipschitz continuity and well-behavedness are
incomparable notions.

Proof. In R2, the trajectory f1(t) = (t, t2) is well-behaved but not Lipschitz continuous.
Note that f1 is locally Lipschitz continuous. For the other non-implication, let f2(0) = (0, 0),
f2(t) = (t, t2 · sin(t−1)), for all t ∈ (0, π−1), and f2(t) = (t, t−π−1), for all t ≥ π−1. Then, f2
is Lipschitz continuous because it is differentiable in (0, +∞) and its derivative is bounded.
However, it is not well-behaved because it crosses the hyperplane y = 0 infinitely often in
any time interval (0, a), with a > 0.

▶ Proposition 4. If a trajectory f is well-behaved, then the corresponding signal σf has finite
variability.

Proof. Take any polyhedral partitioning {Pi}i∈I of Rn that respects the propositions in
AP, meaning that, for all i ∈ I and p ∈ AP, either Pi ∩ [p] = ∅ or Pi ⊆ [p]. Since f

is well-behaved, it must change convex polyhedron in {Pi}i∈I a finite number of times in
⟨0, T]. Let Pi1 , . . . , Piz

be the sequence of convex polyhedra traversed by f in that interval
and τ = {ti}k

i=0 ⊆ R+ the sequence of instants in which f changes polyhedron in the
sequence, with the possible addition of instants 0 and T , if needed. Since the polyhedral
partitioning respects AP, every Pij is contained in [[α]], for some α ⊆ AP. Hence, τ is a
suitable time-slicing of f . The thesis follows then from the finite length of τ .

▶ Lemma 3. For all Rtlf formulae φ, signals σ : ⟨0, T]→ 2AP , and time instants t ∈ ⟨0, T],
the following holds true: σ>t |= φ iff there exists a time instant t′ ∈ (t, T] such that σ≥t′′ |= φ,
for all t′′ ∈ (t, t′).

Proof. The proof proceeds by induction on the Boolean structure of the Rtlf formula φ,
where we consider as base cases the atomic propositions and the U̇ temporal formulae. Since
the inductive cases of Boolean operators ¬ and ∧ are trivial to deal with, here we focus on
the base cases for atomic propositions and U̇ only. Recall that U is a derived operator.

• [Base case φ = p ∈ AP]. Since σ>t is a left-open signal, by the semantic of atomic
propositions, σ>t |= p holds iff there exists a non-empty open interval (t, t′) ⊆ (t, T] such
that p ∈ σ>t(t′′ − t) = σ(t′′), for all t′′ ∈ (t, t′), which also means σ≥t′′ |= p, again by the
semantic of atomic propositions, this time on left-closed signals. Hence, the truth of the
statement is immediately verified.

• [Base case φ = φ1 U̇ φ2, only-if direction]. By the semantics of the temporal operator
U̇, if σ>t |= φ1 U̇ φ2, then there exists t2 ∈ (t, T] such that σ≥t2 |= φ2 and σ≥t1 |= φ1, for
all t1 ∈ (t, t2). As an immediate consequence, by using precisely t′ ≜ t2 as witness of the
second property, we have σ≥t′′ |= φ1 U̇ φ2, for all t′′ ∈ (t, t′).

• [Base case φ = φ1 U̇ φ2, if direction]. Let τ = {ti}k
i=0 ∈ TS(σ>t) be a time-slicing

of the suffix σ>t of the signal σ and j ∈ {1, . . . , k} the smallest index such that either
(a) σ≥t+tj

|= φ2 or (b) σ≥t+t′′ |= φ2, for all t′′ ∈ (tj−1, tj). The existence of such an index
is ensured by the fact that at every time instant t′′ of the non-empty open interval (t, t′)
the until formula φ1 U̇ φ2 is satisfied. Now, suppose by contradiction that σ>t ̸|= φ1 U̇ φ2.
Since φ2 is satisfied either at time instant t + tj or at all time instants t + t′′, with
t′′ ∈ (tj−1, tj), the only possibility for the until formula to be falsified is the existence
of at least one time instant t1, either in (t, t + tj) or in (t, tj−1], such that σ≥t1 ̸|= φ1.
However, this would clearly lead to σ≥t′′ ̸|= φ1 U̇ φ2, for all t′′ ∈ (t, t1), which contradicts
the hypothesis.

TIME 2024

16:20 Model Checking Linear Temporal Properties on Polyhedral Systems

The following lemma is a straightforward adaptation of Lemma 1 from [3], used in the
proofs of Lemma 4 and Lemma 5.

▶ Lemma 8 ([3]). For any convex flow constraint Flow, convex polyhedron X and points
x1, x2 ∈ X, the following two conditions are equivalent for all t∗ ≥ 0:

1. there exists a trajectory f such that f(0) = x1 and f(t∗) = x2;
2. there is a straight-line trajectory f ′(t) ≜ x1 + d · t, with d ∈ Flow, such that f ′(0) = x1,

f ′(t∗) = x2 and f ′(t) ∈ X, for all t ∈ [0, t∗].

▶ Lemma 4. For all polyhedra A and convex polyhedra B the following holds:

reach0(A, B) = A ∩ cl(B) ∩B↙>0 .

Proof. Let ∆ ≜ A∩ cl(B)∩B↙>0. To show that ∆ ⊆ X0, we just need to observe first that
if x ∈ ∆, then x ∈ A. Moreover, x ∈ B↙>0, which means that there is a direction d ∈ Flow
such that x + d · t ∈ B, for some t > 0. In addition, since x ∈ cl(B) and B is convex, we have
that x + d · t′ ∈ B, for all t′ ∈ (0, t]. But f(t) = x + d · t is clearly an admissible trajectory
that satisfies the required conditions for x to be in X0. Hence, the conclusion.

For the other direction, let x ∈ X0, f be any admissible witness trajectory and t > 0
be such that f(t′) ∈ B for all t′ ∈ (0, t]. Let, in addition, y ≜ f(t). By convexity of B, the
segment connecting x and y lies entirely in cl(B). Since y can be reached from x following
an admissible trajectory, by convexity of Flow and Lemma 8, there is a direction d ∈ Flow
such that y = x + d · t. Clearly, the set

{z ∈ Rn | z = x + d · t′, for some t′ ∈ [0, t]}

contains all and only the points of the segment from x to y and is, therefore, contained in
cl(B). Hence, we conclude that x ∈ A ∩ cl(B) ∩B↙>0, as required.

▶ Lemma 5. For all polyhedra A and convex polyhedra B the following holds:

reach+(A, B) =
⋃

P ∈Patch(A)

RWAm(TP , A), where TP ≜ P ∩ (cl(P) ∩B)↙>0 .

Proof. First, observe that, by definition, TP ⊆ P ⊆ A. As a consequence, we obtain that:

RWAm(TP , A) = {x ∈ Rn | ∃f ∈ Trajwb(x), t ≥ 0 : f(t) ∈ TP and ∀t′ ∈ [0, t) : f(t′) ∈ A}.

Consider any point x ∈ RWAm(TP , A), a trajectory f witnessing its membership to the set
RWAm(TP , A), a time instant t ∈ R+ such that f(t) ∈ TP and f(t′) ∈ A, for all t′ ∈ [0, t),
and let y ≜ f(t) ∈ TP . Clearly, y ∈ P and also y ∈ (cl(P) ∩B)↙>0. This means that
there is an admissible straight trajectory f ′ that, in a strictly positive amount of time,
leads from y to a point belonging both to the closure of P and to B. Let t∗ > 0 be a time
instant such that f ′(t∗) ∈ cl(P) ∩ B. Since f ′ is a straight trajectory and P is a convex
polyhedron, f ′(t′) is contained in P , hence also in A, for all t′ ∈ [0, t∗). By concatenating
f with f ′ we obtain an admissible trajectory f ′′ defined as follows: f ′′(t′) = f(t′), for all
t′ ∈ [0, t], and f ′′(t′) = f ′(t′ − t), for all t′ ∈ (t, t + t∗]. Clearly, f ′′ leads from x ∈ A to
a point z ∈ B, while never leaving A except, possibly, in the last instant. In addition,
x = f(0) = f ′′(0) and f(0) is required to belong to A. By combining these observations, we
obtain that for all x ∈ RWAm(TP , A) it holds that there exists f ∈ Trajwb(x) and t ∈ R>0
with f(t) ∈ B and for all t′ ∈ (0, t), f(t′) ∈ A. Hence, for all P ∈ Patch(A), we have that
RWAm(TP , A) ⊆ reach+(A, B).

M. Benerecetti, M. Faella, F. Mogavero 16:21

For the other direction, assume x ∈ reach+(A, B). Then there exist f ∈ Trajwb(x) and
t ∈ R>0, with f(t) ∈ B and f(t′) ∈ A, for all t′ ∈ (0, t). Since A is a polyhedron and f is
well-behaved, the trajectory can only change convex polyhedron in Patch(A) a finite number
of times. This means that there is a last patch of A traversed by f before entering B in
which f lingers for a positive amount of time. Let P be such a patch. Since as soon as
f exits from P it enters B, it must do so by passing at time t through a point in B that
lies on the border between P and B, that is f(t) ∈ cl(P) ∩ B. Let t∗ ∈ [0, t) be a time
interval such that f(t′) ∈ P , for all t′ ∈ (t∗, t). By convexity of P and Flow and thanks to
Lemma 8, we obtain that f(t′) ∈ P ∩ (cl(P) ∩B)↙>0= TP , for all t′ ∈ (t∗, t). But then f

is a witness of the membership of x to the set RWAm(TP , A). As a consequence, we obtain
that reach+(A, B) ⊆

⋃
P ∈Patch(A) RWAm(TP , A).

The next lemma is instrumental in proving the completeness of Algorithm 1 in Lemma 7.

▶ Lemma 9. For all hybrid runs ρ, states s ∈ Sopen, and patches P ∈ Patch([[s]]), there
exists a hybrid run ρ′ such that:

ρ′ starts and ends in the same pairs as ρ;
ρ′ passes at most once through the pair (P, s);
Visited(ρ′) ⊆ Visited(ρ);
the length of the shortest discrete trace of ρ′ is smaller than or equal to that of ρ.

Proof. Assume that ρ passes at least twice through the pair (P, s). Let t1, t2 be two times
in the domain of ρ belonging to the first and to the last visit to (P, s). In particular,
ρ(ti) ∈ (P, s), for i = 1, 2. Let ρ(ti) = (xi, s), we define a new hybrid run ρ′ by connecting
with a straight trajectory point x1 to x2. By convexity of the flow, such trajectory is feasible.
By convexity of P , such trajectory is entirely contained in P . The rest of ρ′ follows exactly
ρ. It is easy to see that ρ′ satisfies all properties required by the thesis.

▶ Lemma 7. For all states s ∈ S, convex polyhedra P ∈ Patch([[s]]) and X ⊆ P , and maps
V : S →s 2Patch([[s]]) such that P ̸∈ V (s), we have that ∃Denot(s, P, X, V) returns the set of
all points x from which there is a hybrid run ρ ∈ HRun(x) such that: (a) ρ ends in (X, s);
(b) ρ avoids V ; (c) if s ∈ Sopen, then ρ avoids (P, s), except for the last slice.

Proof. [Soundness] First, we prove that the base case of the algorithm is sound, that is,
that the points returned at Line 1 satisfy the lemma items. Any initial state of Aφ̂ is in
itself a run of Aφ̂ of length 1 from an initial state. If s is an initial state, by Proposition 6(a)
it includes the sing proposition. Then, for all x ∈ X let f be the trajectory of duration 0
defined by f(0) = x. Its discrete trace wf contains a single symbol and induces the run
rd = s in Aφ̂. The hybrid run (f, rc) ends in (X, s), giving Item (a); and avoids V , because
its only point is (x, s) and, by assumption, x ∈ P ̸∈ V (s). Thus, we have Item b. Item (c)
trivially holds since s ̸∈ Sopen.

Next, we consider the points added to the result at Line 9. We proceed by induction on
the length k of the longest sequence of pairs (si, Pi)i=0,...,k−1 such that: (i) the sequence
(si)i=0,...,k−1 is a (not necessarily initial) run of Aφ̂ ending in sk−1 = s, (ii) Pk−1 = P , (iii)
each Pi is a patch of [[si]], (iv) if si ∈ Sopen then Pi ̸∈ V (si), (v) all the pairs (si, Pi) such
that si ∈ Sopen are distinct. Note that Items (i) and (v) imply that the length of these
sequences is bounded by twice the number of distinct non-singular pairs. We call the length
so defined k(s, P, V).

In the base case, k(s, P, V) = 1. Then, the algorithm does not perform any recursive call,
because for each predecessor s′ of s, the set A′ ≜ reachtype(s′)(A, X) computed at Line 6 is

TIME 2024

16:22 Model Checking Linear Temporal Properties on Polyhedral Systems

empty, with A ≜ [[s′]] \V (s′). Indeed, assume by contradiction, that there is a predecessor s′

of s whose set A′ is not empty. Therefore, the must be a pair (Q, Y) ∈ split(A′, A), where Q

is a patch of A and the sequence (s′, Q)(s, P) has all the properties (i)–(v) needed to prove
that k(s, P, V) > 1, contradicting the assumption of the base case. We conclude that either
s has no predecessors, or A′ is empty. Hence, no points are added to the result at Line 9.

For the inductive case, assume that the longest sequence described above has length
greater than 1. Let s′ be a predecessor of s and let {(Q1, Y1), . . . , (Qn, Yn)} be split(A′, A).
For all i = 1, . . . , n, we apply the inductive hypothesis to s′, Qi, and V ′, where V ′ = V [s 7→
V (s) ∪ {P}], if s ∈ Sopen , and V ′ = V , otherwise, as prescribed by Line 3. In order to apply
the inductive hypothesis, we prove that k(s′, Qi, V ′) < k(s, P, V) in both cases. Assume by
contradiction that h ≜ k(s′, Qi, V ′) ≥ k(s, P, V) and let ξ ≜ (si, Pi)i=0,...,h−1 be the sequence
of length h corresponding to (s′, Qi, V ′). We extend ξ′ with the pair (s, P), thus obtaining
the sequence ξ′ ≜ ξ · (s, P) of length h + 1. We can show that ξ′ satisfies all five Items (i)-(v)
w.r.t. (s, P, V). Items (i)-(iii) are trivially true, so we can focus on the remaining two:

If s ∈ Sopen , then Item (iv) follows from the assumption that P ̸∈ V (s), while Item (v) is
due to the fact that no pair in ξ can be equal to (s, P), since P ∈ V ′(s).
If s ∈ Ssing, then both Items (iv) and (v) hold trivially.

Hence, ξ′ is a sequence satisfying (i)-(v) w.r.t. (s, P, V), so k(s, P, V) ≥ h + 1, which
contradicts the hypothesis.

Now, consider a point x in ∃Denot(s′, Qi, Yi, V ′) and the witness hybrid run ρ′ = (f ′, r′)
provided by the inductive hypothesis, whose trajectory f ′ goes from x to Yi ⊆ A, and let
{tj}k

j=0 be its time-slicing. In the following we shall extend ρ′ to reach (X, s), using the
definition of reach, while satisfying the Items (a), (b), and (c) of the lemma. We again
distinguish two cases.

[s′ ∈ Ssing] By Proposition 6(c), type(s′) = 0 and s ∈ Sopen. In this case, f ′ must end in
some point z ∈ Yi. Since Yi ⊆ A′ = reach0(A, X), let f ′′ be the trajectory that starts in
z, immediately enters X, and remains inside X in the interval (0, ϵ), for some ϵ > 0. Let
f be the concatenation of f ′ and f ′′. It is immediate to observe that τ = {tj}k+1

j=0 , with
tk+1 = (tk + ϵ), is a time-slicing of f .
Let us set ρ ≜ (f, r) , where r is the continuous run of f that has the following form:

r(t) =
{

r′(t) if 0 ≤ t ≤ tk

s if tk < t < tk + ϵ.

Clearly, ρ is a hybrid run in HRun(x) with τ one of its time-slicings.
As, by construction, ρ ends in (X, s), we obtain that Item (a) holds. Item (b) is satisfied,
since ρ′ avoids V ′, by assumption P ̸∈ V (s), and V is pointwise included in V ′. Item (c),
instead, follows from the fact that V ′ = V [s 7→ V (s) ∪ P].
[s′ ∈ Sopen] Obviously, type(s′) = +, and s ∈ Ssing. Recall that ρ′ ends in (Yi, s′) and
let t′ > tk−1 be any time instant such that y ≜ f ′(t′) ∈ Yi. Observe that r(t′) = s′,
since there cannot be a state change within the same time slice. Let f ′′ be the witness
trajectory given by the property of reach+(A, X), which starts in y, reaches X, and in the
intermediate times remains inside A = [[s′]] \ V (s′). Now, let f be the trajectory obtained
by concatenating the prefix of f ′ ending in y with f ′′ and τ = {t0, t1, . . . , tk−1, t∗}, with
t∗ = t′ + ϵ, where ϵ is the duration of f ′′. Observe that f(t) ∈ [[s′]], for all t ∈ (tk−1, t∗).
Indeed, (tk−1, t′) ⊆ (tk−1, tk) and, by hypothesis, f ′ lies in [[s′]] in latter interval. Moreover,
f ′′ lies in A ⊆ [[s′]] in the interval (0, ϵ), hence f lies in A ⊆ [[s′]] in the interval (t′, t∗).
Clearly, the signal of f is constant, and equal to λ(s′)∩AP, in the entire interval (tk−1, t∗),

M. Benerecetti, M. Faella, F. Mogavero 16:23

therefore τ is a proper time slicing for f . Let us set ρ ≜ (f, r) , where r is the continuous
run of f that has the following form:

r(t) =

r′(t) if 0 ≤ t ≤ tk−1
s′ if tk−1 < t < t∗

s if t = t∗.

Trivially, ρ satisfies Item (c). Moreover, ρ satisfies Item (b), since ρ′ avoids V ′ = V and
at all times f ′′ is either contained in A, which is disjoint from V (s′), or in X, which is
disjoint from V (s) by assumption. Item (a) holds as well, since wf = wf ′ · λ(s). Indeed,
the trajectory f ′′ entirely lies in [[s′]] except for its last point, which belongs to [[s]].

[Completeness] Given s ∈ S, P ∈ Patch([[s]]), X ⊆ P , and V , let y be a point from which
there is a hybrid run satisfying Items (a)-(c). Among those hybrid runs, let ρ = (f, rc) be one
that induces a shortest discrete trace, and let τ = {ti}k

i=0 be the corresponding time-slicing.
Formally, (ρ, τ) ∈ arg min(f,_)∈HRun(x),τ∈T S(σf)|trace(σf , τ)|.

Let w ≜ trace(σf , τ) and k(y, s, P, X, V) be the length of w. We prove that y ∈
∃Denot(s, P, X, V) by induction on k(y, s, P, X, V).

Base case [k(y, s, P, X, V) = 1]: By Item (a), s is an initial state. By Proposition 6(a),
s ∈ Ssing. Since the only left-closed trajectories with a discrete trace of length one are
those with zero duration, we have that f starts and ends in y, which implies y ∈ X, by
Item (a). By Line 1 of Algorithm 1, we have that y ∈ ∃Denot(s, P, X, V), thus, the
thesis follows.
Inductive case [k(y, s, P, X, V) > 1]: Let w = w′ · α, with α ⊆ ÂP and s′ ∈ S the state
of Aφ̂ preceding s in rc. Note that α = λ(s) and s ̸∈ S0, by Proposition 6(b). We
distinguish two cases.
[s ∈ Ssing]: By Proposition 6(c), s′ ∈ Sopen . Let A′ = reach+(A, X), with A = [[s′]]\V (s′).
Since f is well-behaved and lies in A′ in the last open slice (tk−1, tk) of τ , there exists a pair
(Q, Y) ∈ split(A′, A) and ϵ > 0 such that f lies in Y ⊆ Q at all times in (tk−1, tk−1 + ϵ].
Consider the prefix ρ′ = (f≤t+ϵ, rc

≤t+ϵ), clearly ρ′ ends in (Y, s′) and its discrete trace
is obtained from w by removing the last symbol α. By applying Lemma 9 to ρ′ and
(Q, s′), there exists a hybrid run ρ′′ that starts and ends where ρ′ does, passes only
once through (Q, s′), satisfies Visited(ρ′′) ⊆ Visited(ρ′), and the induced discrete trace
is no longer than the one of ρ′. Therefore, k(y, s′, Q, Y, V) < k(y, s, P, X, V). Hence,
y satisfies the inductive hypothesis w.r.t. s′, Q, Y , and V , as witnessed by ρ′′, and so
y ∈ ∃Denot(s′, Q, Y, V). Since (s′, s) ∈ δ and (Q, Y) ∈ split(A′, A), the algorithm at
Line 9 adds y to the set Result, which is then returned.
[s ∈ Sopen]: By Proposition 6(c), s′ ∈ Ssing. Let A′ = reach0(A, X), with A = [[s′]]\V (s′).
Since ρ ends in (X, s), there exists (Q, Y) ∈ split(A′, A) such that f(tk−1) ∈ Y . Next,
consider the prefixes f ′ = f≤tk−1 , ρ′ = ρ≤tk−1 , and τ ′ = {ti}k−1

i=0 . Clearly, ρ′ ends in
({f(tk−1)}, s′). Let V ′ = V [s 7→ V (s) ∪ {P}] as in Line 3 of the algorithm. By Items (b)
and (c) on ρ w.r.t. y, s, P , X, and V , it holds that ρ′ avoids V and (P, s). Hence, ρ′

avoids V ′. It follows that ρ′ satisfies Items (a)-(c) with respect to y, s′, Q, Y , and V ′.
Moreover, the discrete trace trace(σf ′ , τ ′) is strictly shorter than w by construction. We
then have that k(y, s′, Q, Y, V ′) < k(y, s, P, X, V) and, by inductive hypothesis, we obtain
that y ∈ ∃Denot(s′, Q, Y, V ′). Since (s′, s) ∈ δ and (Q, Y) ∈ split(A′, A), the algorithm
at Line 9 adds y to Result, which is then returned.

TIME 2024

	1 Introduction
	2 Polyhedral Systems, Trajectories, and Signals
	2.1 Well-Behavedness and Finite Variability

	3 Linear Temporal Logics
	4 Discretisation
	4.1 Discretising Signals
	4.2 Discretising Formulae

	5 Model Checking Rtlf on Polyhedral Systems
	5.1 The Basic Operators
	5.2 The Finite Automaton
	5.3 The Algorithm

	6 Experiments
	A Additional Proofs

