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Abstract
When reasoning about games, one is often interested in verifying more intricate strategic

properties than the mere existence of a winning strategy for a given coalition. Several languages,
among which the very expressive Strategy Logic (SL), have been proposed that explicitly quantify
over strategies in order to express and verify such properties. However, quantifying over strategies
poses serious issues: not only does this lead to a non-elementary model-checking problem, but the
classic Tarskian semantics is not fully adequate, both from a conceptual and practical viewpoint,
since it does not guarantee the realisability of the strategies involved.

In this paper, we follow a different approach and introduce Plan Logic (PL), a logic that takes
plans, i.e., sequences of actions, as first-class citizens instead of strategies. Since plans are much
simpler objects than strategies, it becomes easier to enforce realisability. In this setting, we can
recover strategic reasoning by means of a compositional hyperteams semantics, inspired by the
well-known team semantics. We show that the Conjunctive-Goal and Disjunctive-Goal fragments of
SL are captured by PL, with an effective polynomial translation. This result relies on the definition
of a suitable game-theoretic semantics for the two fragments. We also investigate the model-checking
problem for PL. For the full prenex fragment, the problem is shown to be fixed-parameter-tractable:
it is polynomial in the size of the model, when the formula is fixed, and 2-ExpTime-complete in
the size of the formula. For the Conjunctive-Goal and Disjunctive-Goal fragments of PL this result
can be improved to match the optimal polynomial complexity in the size of the model, regardless of
the size of the formula.
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1 Introduction

When reasoning about games, one is often interested in verifying strategic properties involving
the players participating in a game. The simplest such property asks whether one of the
players is able to win the game, possibly under specific conditions, regardless of what the
other players do. This corresponds to checking whether that player has a winning strategy,
namely a set of rules, ideally in the form of a procedure or a function, stipulating how the
player must choose its moves in each situation or position during the game in order to achieve
the goal corresponding to its winning condition. This has led to the development of a number
of logical languages specifically tailored to allow for expressing temporal properties that can
predicate, more or less explicitly, over strategies. Notable examples are Alternating Temporal
Logic (ATL*) [2, 3, 19] and Strategy Logic (SL) [7, 18, 8, 16, 17]. In its general form, a
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10:2 Plan Logic

strategy can be viewed as a function that maps histories, i.e., finite sequences of observables
encoding what players have seen up to the current situation in the game, to moves that the
player following that strategy has to perform in the current position. In SL notation, for
instance, one would express the property that player a can win a game against some other
player, say b, by means of the following first-order-like sentence ∃X.∀Y. (a,X)(b,Y)ψ, where
variables X and Y range over strategies, (a,X) and (b,Y) bind each player to a specific strategy,
and ψ is an LTL formula encoding a’s winning condition. The sentence can be read as follows:
there exists a strategy X such that, for all strategies Y, if player a follows X and b follows Y,
then the objective ψ is achieved. The separation of strategy quantifications and bindings is a
distinctive feature of SL and allows for comparing different strategies for multiple objectives,
called goals, each corresponding to a binding of agents and variables followed by an LTL
formula. This is what provides the logic with the ability to directly express complex strategic
properties, such as, for instance, the existence of Nash equilibria [7, 18].

Ideally, once we know that an objective in a game is achievable, we would like to be able
to synthesise the existentially quantified strategies that witness the possibility of achieving
that goal. This, in turn, would provide a concrete way to obtain a solution to the game by
means of logical reasoning. However, quantification over strategies may lead to situations
where a formula can be satisfied only if the witness strategies are built with full knowledge
of the strategies of the opponents. What this means is that, in order to synthesise such
strategies, one may need to know what the other strategies prescribe in the future or even
in counterfactual situations, that is along histories different from the one actually followed.
Satisfaction of the sentence ∀Y.∃Z. (a, Z)(b,Y)ψ, for instance, boils down to the existence of
a Skolem function f such that the purely universal sentence ∀Y. (a, f(Y))(b,Y)ψ is satisfied.
Function f essentially encodes the mechanism that allows one to build the required witness
strategy. However, the input to f is a full-fledged strategy, namely a tree-like object that
dictates a response to every history of the game. As a consequence, the response f(σ)(ϖ)
of the strategy f(σ) on a given history ϖ may well depend on what the input strategy σ

dictates on histories different from ϖ. Such information is, however, usually not available
while playing the game, as neither future nor counterfactual situations have been encountered
by the players. In many cases, the dependency of the Skolem function on these situations
is actually not necessary to satisfy the formula and, in those cases, one can prove that a
Skolem function exists that indeed does not. When the only Skolem functions that provide
satisfaction of a formula do depend on future or counterfactual situations, we say that the
corresponding witness existential strategies are unrealisable. For instance, this is the case
for the multi-goal sentence ∀Y.∃Z. ((a,Y)X X p↔ (a, Z)X p), requiring that, for any strategy Y,
there exists a response strategy Z which, when followed by the same agent a, ensures in the
next step the same literal granted by Y two steps ahead. On structures where all positions
have successors for each literal, that sentence can clearly only be satisfied by non-realisable
strategies. The phenomenon where a sentence turns out to be satisfied only with unrealisable
witnesses is referred to as non-behavioural satisfaction in the literature [16, 11]. Not only
does this allow for satisfiable sentences for which no concrete and effective mechanisms can
be implemented that synthesise the corresponding winning strategies for the game, it has
also been shown to be the main source of complexity in strategic reasoning [16, 5], often
leading to non-elementary procedures for the decision problems.

Interestingly enough, there are fragments of SL that are not intrinsically affected by the
problem. More specifically, it was shown in [16] that every formula in the One-Goal fragment
of SL is behaviourally satisfiable, meaning that if it is satisfiable then there exists a realisable
Skolem function that, along each history, only needs to look at that history to choose the
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next move. This result was later generalised in [11, 12], where a new semantics for SL, called
timeline semantics, was proposed and the maximal fragment SL[eg], based on the semantic
notion of semi-stability, was identified that enjoys the realisability property. These results
try to overcome the problem of non-behavioural satisfaction by identifying well-behaved sets
of formulae, for which focusing only on the observations of the current history is enough to
decide satisfaction. One may argue that, while reasoning about games, those are the only
formulae we are really interested in when we want to figure out how to enforce the objectives.

Based on the above observations, we propose here a logic, called Plan Logic (PL), for
which, by design, no such problem can arise and which can nonetheless express most of the
relevant game-theoretic strategic properties. In addition, the truth of all such properties
can be checked in doubly-exponential time at most, with the additional guarantee that
any satisfied sentence is realisable in the sense discussed above. This is achieved by taking
plans, namely infinite sequence of moves, as primary objects for the domain of quantification
instead of strategies. Plans are much simpler objects compared to strategies, as they have an
intrinsically linear nature. Strategies, by contrast, exhibit a branching nature, as they must
take care of a player’s behaviours along all possible histories, which, taken all together, form
a tree-like structure. In a sense, strategies can be viewed as adaptive plans that may react
differently depending on the context and the same strategy can also be used for different
goals. Such a strategy would prescribe the same choices for two goals as long as they are
indistinguishable to the players, that is as long as the histories along the corresponding plays
for the two goals coincide, still allowing for different behaviours when the two goals can be
distinguished. This feature is not a native one for plans though. Hence, in order to enforce
the same behaviour in indistinguishable contexts, we allow for plans to be tied together
by means of specific operators. Essentially, as long as two goals are indistinguishable for
the players, two tied plans are required to prescribe the same actions, exactly like a single
strategy would do.

The linear nature of plans, on the other hand, makes it much easier to enforce realisability.
For one, dependence on counterfactual futures becomes a non-issue, since each plan dictates
the moves an agent has to take along a single history and different goals would use distinct,
though possibly tied, plans. In order to ensure that the choices of a plan do not depend on
the future choices of other plans along the same history, we simply need to impose suitable
restrictions on the possible dependencies between the quantified variables at the semantic
level. Capturing such constraints requires a semantics able to meaningfully express functional
dependencies among quantified variables and, at the same time, retain the determinacy of
the logic, meaning that each sentence is either true or false in a given structure. To this end,
we employ the Alternating Hodges’ semantics, a semantics based on hyperteams, namely sets
of sets of variable assignments, in a similar vein to what has been done for QPTL in [5].

Besides the design of PL and the corresponding compositional hyperteam semantics,
our contribution is manifold. We provide a polynomial translation of the Conjunctive-
Goal and Disjunctive-Goal fragments of SL under timeline semantics into PL, whose spirit
consists in simulating strategy variables by means of several suitably-tied plan variables.
The soundness of this translation (Theorem 7) deeply relies upon the introduction of a
game-theoretic semantics for these fragments (Theorem 8), which, to our knowledge, has
never been proposed in the literature. The result also shows that each Boolean connective,
taken in isolation, exhibits a game-theoretic behaviour. In addition, we study the model-
checking problem for PL, taking inspiration from the introduced game-theoretic approach.
We prove that, for the Boolean-Goal fragment of PL, the problem is 2-ExpTime-complete
in the length of the formula and fixed-parameter-tractable in the size of the model, once
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10:4 Plan Logic

the maximum number of bindings is fixed in the formula (Theorem 14). This is the first
result with an elementary complexity of the entire Boolean-Goal fragment of a logic for
strategic reasoning, in stark contrast with the tower-complete complexity of Boolean-Goal
SL under standard semantics [6]. Incidentally, note that no model-checking procedure exists
for Boolean-Goal SL under timeline semantics [11, 12]. By leveraging the similarity between
the game-theoretic semantics of the Conjunctive and Disjunctive-Goal fragments of both PL
and SL, we improve the model-checking complexity of those fragments to PTime-complete
in the size of the model (Theorem 16).

In light of all these results, we argue that plans not only appear to be a powerful alternative
to strategies, but they may also be preferable in terms of adequacy, as most of the difficulties
and annoyances that come into play when dealing with strategies do not affect plans.

2 Preliminaries

We denote by Σ∞ (resp., Σ∗, Σ+, Σω) the set of (resp., finite, non-empty finite, infinite)
sequences w over the alphabet Σ, with length |w| ∈ N ∪ {∞}. Given n < |w|, the element at
n of w is denoted by (w)n, while its prefix up to n by (w)≤n. Two sequences w, u ∈ Σ∞ are
equal up to n ∈ N, in symbols w =≤n u, if w = u or n < min{|w|, |u|} and (w)≤n = (u)≤n.
This equivalence relation lifts to partial functions f, g : Z⇀X∞ on an arbitrary domain Z as
follows: f =≤n g if dom(f)=dom(g) and f(z)=≤n g(z), for all z∈dom(f).

A concurrent game structure (CGS, for short) w.r.t. an a priori fixed countably-infinite
set of atomic propositions AP is a structure G≜ ⟨Ag,Ac,Ps, vI , δ, λ⟩, where Ag is a finite non-
empty set of agents, Ac and Ps are countable non-empty sets of actions and positions, vI ∈ Ps
is an initial position, δ : Ps × AcAg → Ps is a transition function mapping every position
v ∈ Ps and action profile c⃗ ∈ AcAg to a position δ(v, c⃗) ∈ Ps, and, finally, λ : Ps → 2AP is
a labelling function mapping every position v ∈ Ps to the finite set of atomic propositions
λ(v) ⊂fin AP true at that position. The size of G is the number of its positions, i.e., |G|≜|Ps|.
By abuse of notation, δ ⊆ Ps × Ps also denotes the transition relation between positions such
that (v, u) ∈ δ iff δ(v, c⃗) = u, for some c⃗ ∈ AcAg. A path π ∈ Pth ⊆ Ps∞ \ {ε} is a sequence
of positions compatible with the transition function and beginning with the initial position,
i.e., (π)0 = vI and ((π)i, (π)i+1) ∈ δ, for each 0 ≤ i < |π| − 1. The labelling function lifts
from positions to paths in the usual way: λ : Pth → (2AP)+. A history is a finite path
ϖ ∈ Hst ≜ Pth ∩ Ps+, while a play π ∈ Play ≜ Pth ∩ Psω is an infinite one. A strategy is a
function σ ∈ Str ≜ Hst → Ac mapping every history ϖ ∈ Hst to an action σ(ϖ) ∈ Ac. A
play π ∈ Play is compatible with a strategy profile σ⃗ ∈ StrAg if, for all i ∈ N, it holds that
(π)i+1 = δ((π)i, c⃗i), where c⃗i ∈ AcAg is the action profile with c⃗i(a) = σ⃗(a)((π)≤i), for all
agents a ∈ Ag. The function play : StrAg → Play assigns to each profile σ⃗ ∈ StrAg the unique
play play(σ⃗) ∈ Play compatible with σ⃗; we also say that σ⃗ induces play(σ⃗).

3 A Logic of Plans

As opposed to existing logics for strategic reasoning, such as ATL* [2] and SL [7, 18], where
the (implicit or explicit) domain of quantification is composed of strategies, quite complex
objects, we introduce Plan Logic that relies on the much simpler notion of plan. Plans are
infinite sequences ρ ∈ Pln ≜ Acω that describes the course of actions an agent chooses to
execute in response to what the other agents already decided to do.

From a syntactic standpoint, Plan Logic bears a strong similarity with SL. In particular,
PL extends LTL by allowing (i) to quantify explicitly over plans, (ii) to assign plans to
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agents by means of a binding mechanism similar to the one of SL that connects agents and
plan variables, and (iii) to form bundles of plan variables via tying operations that are crucial
to correlate different plans as parts of essentially the same strategy in the game model.

Syntax. Throughout this work, we implicitly assume an a priori fixed countably-infinite set
of variables Vr. A binding ♭ ∈ Bn≜VrAg is a function mapping every agent a ∈ Ag to a variable
♭(a) ∈ Vr, commonly represented as a finite sequence of binding pairs (a1, x1), . . . , (ak, xk),
where each agent occurs exactly once. By vr(♭) ⊂ Vr we denote the set of variables occurring in
♭ and lift the notation to sets of bindings as the union of the corresponding sets element-wise.

For simplicity, the syntax of the full logic forces formulae to be flat, as in the flat fragments
of CTL* [9] and ATL* [13], where sentences can be combined in a Boolean way, but cannot
be nested. Notice that this flatness constraint comes w.l.o.g., when the model-checking
problem is considered, as the latter can always be reduced to reasoning about flat formulae
via a relabelling of the underlying structure (see [15, 3], for details).

▶ Definition 1. Plan Logic (PL, for short) is the set of formulae built according to the
following context-free grammar, where ♭ ∈ Bn, ψ ∈ LTL, V ⊂fin Vr, and x ∈ Vr:

φ := ♭ψ | ¬φ | φ ∧ φ | φ ∨ φ | ⟨V⟩φ | [V]φ | ∃x. φ | ∀x. φ.

We shall denote by free(φ) ⊆ vr(φ) ⊂ Vr the sets of free variables and variables occurring
in φ. Specifically, free(♭ψ) ≜ vr(♭) and free(⟨V⟩φ) = free([V]φ) ≜ V ∪ free(φ); all other cases
are as usual. A sentence φ is a formula without free variables, i.e., free(φ) = ∅. Similarly,
bnd(φ) ⊂ Bn denotes the set of bindings occurring in φ.

The binding ♭ in a PL goal ♭ψ have basically the same interpretation as in SL, namely
as the mechanism that associates agents with the content of variables, plans in our case,
against which LTL formulae can be evaluated, once the corresponding play is determined.
Quantifiers and tying operators, on the other hand, need some explaining in game-theoretic
terms. Since we are interested in realisability, we require that the plans we quantify over must
be effectively computable, namely that each action chosen at some instant can only depend
on the past choices of all the quantified plans. This allows us to view plans as branches
of the tree representations of strategies. With this view in mind, the quantifier ∃x (resp.,
∀x) can be read as “there exists a realisable plan ...” (resp., “for all realisable plans ...”).
Tying operators, instead, are precisely the mechanism that connects plans to strategies in the
following sense. Different plan variables denote branches of the same strategy, as long as they
provide the same choices for any two bindings that share the same history. The operator ⟨V⟩
(resp., [V]) can then be read as “the plans in V are part of a strategy and ...” (resp., “if the
plans associated with V are part of a strategy then ...”). Essentially, the two operators filter
out sets of plans that cannot be part of the same strategy, because they prescribe different
actions for the same history. In a sense, these operators play the role of strategic constructs,
implicitly quantifying existentially and universally over strategies via their component plans.

To better understand these intuitions, let us discuss some examples of SL formulae and
their corresponding PL equivalents. The simple SL sentence ΦW = ∃X.∀Y. (a,X)(b,Y)ψ states
that an agent a can win a two-player game with LTL objective ψ. Specifically, it requires
the existence of a strategy X whose induced plays, each one induced by some strategy Y of
the adversary b, satisfy ψ. This same property would be expressed in PL by the sentence
φW = ∃x. ∀y. ⟨x⟩ [y](a, x)(b, y)ψ, which states that there exists a realisable plan followed by
a that is part of some strategy, e.g., the witness strategy for X of the SL sentence, and
ensures the objective, regardless of the realisable plans y that are part of possible strategies
Y followed by the adversary. Note that the realisability requirement for plans is crucial here,
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10:6 Plan Logic

since it means that their actions must be chosen on-the-fly only with knowledge of the past
history, in order to mimic the behaviour of strategies.

For a second example, let us consider the property claiming the existence of a strategy for
some objective ψ that is not strictly dominated by any other strategy. This is expressed by
the SL sentence ΦNSD = ∃X.∀X′.∃Y. ((a,X′)(b,Y)ψ → (a,X)(b,Y)ψ) . The formula asserts that,
for some strategy X and any other strategy X′, both for the same agent a, there is at least
one strategy Y for the opponent such that following X′ instead of X would not give a a better
outcome. In PL terms, that property is captured by the sentence φNSD = ∃x. ∀x′.∃y1, y2. ⟨x⟩
[x′] ⟨y1, y2⟩ ((a, x′)(b, y1)ψ → (a, x)(b, y2)ψ), where we ensure that the two plans y1 and y2
are part of the same existentially quantified strategy Y for b.

As a final example, consider the existence of a Nash equilibrium for the two agents, a
and b, whose objectives are ψa and ψb, respectively. An SL sentence for this property is
ΦNE = ∃X.∃Y.∀Z. (((a, Z)(b,Y)ψa → (a,X)(b,Y)ψa) ∧ ((a,X)(b, Z)ψb → (a,X)(b,Y)ψb)) , where
X and Y represent the equilibrium strategies. The sentence asserts that neither agent can
improve by unilaterally deviating from the profile, i.e., by deciding to follow any other
strategy Z instead of X and Y. The corresponding PL sentence is

φNE = ∃x1, x2.∃y1, y2.∀z1, z2. ⟨x1, x2⟩ ⟨y1, y2⟩ [z1, z2]

 ((a, z1)(b, y1)ψa → (a, x2)(b, y2)ψa)
∧

((a, x1)(b, z2)ψb → (a, x2)(b, y2)ψb)

,
where the existential strategies X and Y are simulated via the operators ⟨x1, x2⟩ and ⟨y1, y2⟩
on the pairs of plans x1, x2 and y1, y2, while the universal strategy Z via [z1, z2] on z1, z2.

The overall intuition underlying the correspondence between SL and PL is that, in order
to express a strategic property comprising a given set of different bindings, one really only
needs to be able to predicate on a small portion of the strategies involved, namely on a single
plan for each binding occurring in the property. This intuition is formally substantiated in
Section 4, where a formal translation of some behavioural fragments of SL is provided.

Semantics. The semantics of PL formulae relies on the basic notion of assignment, a partial
function χ ∈ Asg≜Vr⇀Pln interpreting variables as plans. We may distinguish assignments
defined exactly over some set V ⊆ Vr, i.e., elements of Asg(V) ≜ {χ ∈ Asg | dom(χ) = V},
and those defined on a superset of V, i.e., elements of Asg⊇(V) ≜ {χ ∈ Asg | V ⊆ dom(χ)}.
The assignment χ[x 7→ ρ] is derived from χ by assigning plan ρ ∈ Pln to variable x ∈ Vr.

To interpret a goal ♭ψ w.r.t. an assignment χ ∈ Asg⊇(vr(♭)), one needs to consider the
play play♭(χ) that is induced by the plan profile ρ⃗ ≜ χ ◦ ♭ ∈ PlnAg obtained as the functional
composition of χ and ♭ and associating a plan in χ with every agent, in accordance with the
binding ♭. Formally, play♭(χ) is the unique play π ∈ Play such that (π)i+1 = δ((π)i, c⃗i), for
all i ∈ N, where c⃗i ∈ AcAg is the action profile associating with each agent a ∈ Ag the action
stipulated at time i by the plan assigned to a in the plan profile ρ⃗, i.e., c⃗i(a) = (ρ⃗(a))i.

The semantics of the tying operators ⟨V⟩ and [V] requires some intermediate notions. Two
bindings ♭1, ♭2 ∈ Bn agree up to n ∈ N on an assignment χ ∈ Asg if play♭1(χ̂) =≤n play♭2(χ̂),
for some extension χ ⊆ χ̂ ∈ Asg⊇(vr({♭1, ♭2})). Intuitively, ♭1 and ♭2 agree up to n on
χ if two corresponding plan profiles induce the same history ϖ of length n + 1, where n
evolution steps have occurred since the initial position. Note that ♭1 and ♭2 agree up to
0 on every assignment, since the initial position is always a common history of length 1.
For an assignment χ ∈ Asg, two variables x1, x2 ∈ dom(χ), and two bindings ♭1, ♭2 ∈ B,
with x1 ∈ vr(♭1) and x2 ∈ vr(♭2), we say that the pair (x1, x2) is (♭1, ♭2)-tied in χ when, for
every n ∈ N, if ♭1, ♭2 agree up to n on χ then χ(x1) =≤n χ(x2). This condition ensures the
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existence of a strategy σ such that the actions (χ(x1))n and (χ(x2))n, at every instant of
time n, coincide with the action σ(ϖ), for some n-evolution-step history ϖ. We lift the
notion to sets of variables V ⊆ dom(χ) and bindings B ⊆ Bn as follows: V is B-tied in χ if
(x1, x2) is (♭1, ♭2)-tied in χ, for all x1, x2 ∈ V and ♭1, ♭2 ∈ B, with x1 ∈ vr(♭1) and x2 ∈ vr(♭2).

A Tarskian semantics for PL, à la SL, would be formalised as follows.

▶ Definition 2. For an implicitly given CGS G, Tarski’s semantic relation χ |= φ for PL is
inductively defined as follows, for all PL formulae φ and assignments χ ∈ Asg⊇(free(φ)).
1. χ |= ♭ψ, if λ(play♭(χ)) |=LTL ψ;
2. the semantics of Boolean connectives is defined as usual;
3. χ |= ⟨V⟩φ, if χ |= φ and V is bnd(φ)-tied in χ;
4. χ |= [V]φ, if χ |= φ when V is bnd(φ)-tied in χ;
5. χ |= ∃x. ϕ, if χ[x 7→ ρ] |= ϕ, for some plan ρ ∈ Pln;
6. χ |= ∀x. ϕ, if χ[x 7→ ρ] |= ϕ, for all plans ρ ∈ Pln.

The meaning of all conditions above should be self-evident. In particular, Item 3 requires,
besides the satisfaction of the formula φ, that the set of variables V be tied in the assignment
w.r.t. the entire set of bindings bnd(φ) occurring in φ, thus ensuring the existence of a
strategy containing the plans associated with V. Item 4 just expresses the dual condition,
witnessing the equivalence between ¬ ⟨V⟩φ and [V] ¬φ.

Despite its simplicity, the treatment of plan quantifiers in this semantics does not correctly
capture the effective computability requirement for the plans discussed above. To see why,
consider again the non-behaviourally satisfiable SL sentence given in the introduction: ΦNB ≜
∀Y.∃Z. ((a,Y)X X p↔ (a, Z)X p). The corresponding PL translation, obtained similarly to the
previous examples, can be, indeed, shown satisfiable under the Tarskian semantics as follows.

▶ Example 3. Consider the sentence φNB =∀y.∃z. [y] ⟨z⟩((a, y)XX p↔ (a, z)X p) and the single-
agent two-action two-position CGS G = ⟨{a}, {0, 1}, {v0, v1}, v0, δ, λ⟩, where (i) action 0
always leads to v0 and action 1 always to v1, regardless of the current position, i.e., δ(vi, {a 7→
j}) = vj , and (ii) position v1 is the only one labelled by p, i.e., λ = {v0 7→ ∅, v1 7→ {p}}.
Being a sentence, we evaluate φNB against the empty assignment ∅. By applying Items 6 and 5
of Definition 2, we obtain G,∅ |= φNB iff, for every plan ρy, there exists a plan ρz such that
G, {y 7→ ρy, z 7→ ρz} |= [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p). Now, by Items 4 and 3, it is immediate
to see that the two tying operators [y] and ⟨z⟩ do not affect the reasoning, since a singleton set
of variables is always trivially tied, no matter which assignment or set of bindings is taken into
account. Thus, G, {y 7→ρy, z 7→ρz} |= [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) iff G, {y 7→ρy, z 7→ρz} |=
(a, y)X X p ↔ (a, z)X p. At this point, one can simply choose ρz ≜ (ρy)1 · 0ω to satisfy the
formula. Hence, following the naive interpretation of φNB via Tarski’s semantics, it holds that
G satisfies φNB in a non-realisable way, since ρz requires knowledge of ρy one step ahead.

This example clearly shows that a precise formalisation of game-theoretic plan quantifica-
tions cannot be achieved by following a first-order Tarskian approach, due to treatment of
plans as monolithic entities. To adequately model plans both as realisable objects and linear
components of strategies, we are, indeed, faced with a challenge. We need to ensure that,
when a plan is chosen by a quantifier, the selection of the action provided by that plan at each
time instant can only depend on the choices made by the other plans so far during the play.
This means that the choice must be made with knowledge of the past, but no knowledge of the
future. Not only does this requirement guarantee the realisability of the plans, which is one of
the main concerns of this work, but it also makes plans compatible with strategies, where the
choices of actions are functionally dependent only on the histories. To overcome this challenge,
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we resort to a semantic framework recently proposed in [5] precisely to handle behavioural
functional dependencies among quantified variables. Alternating Hodges’ semantics is a
compositional formulation of the interpretation of formulae with a distinctive game-theoretic
flavour involving two players: Eloise, who wishes to prove the formula true, and Abelard,
who tries to disprove it. The underlying idea is that the interpretations of the free variables
of a formula φ correspond to the choices that the two players have made prior to the current
stage of evaluation of φ. These possible choices are recorded in a two-level structure, called
hyperteam, which is a set of sets of assignments or, in team-semantics terminology [20], a set
of teams. Each level summarises the information about the choices a given player can make
in its turns. To evaluate φ, then, one player chooses a team, while the opponent chooses one
assignment in that team. We shall use a flag α ∈ {∃∀,∀∃}, called alternation flag, to keep
track of which player is assigned to which level of choice, together with two corresponding
satisfaction relations, |=∃∀ and |=∀∃, for the evaluation. If α = ∃∀, Eloise chooses the team,
while Abelard chooses one of the contained assignments, which must satisfy φ; if α = ∀∃,
the dual reasoning applies. Given a flag α ∈ {∃∀,∀∃}, we denote by α the dual flag, i.e.,
α ∈ {∃∀,∀∃} with α ̸= α. For the sake of space, we refer to [5, 4] for a detailed analysis of
this semantic framework, for the proofs of classic model-theoretic properties, e.g., De Morgan
laws, the closure under positive normal form, and for further discussions and explanations.

First-order quantifiers Qx are dealt with by means of the notion of response function, a
refined version of Skolem function, namely a map F ∈ Rsp ⊆ Asg → Pln from assignments
to plans such that if χ1 =≤n χ2 then F(χ1) =≤n F(χ2), for all χ1, χ2 ∈ Asg and n ∈ N.
Intuitively, at each time instant n, the action (F(χ))n of the chosen plan F(χ) only depends on
the actions (χ(x))t of the plan χ(x) at the time instants t ≤ n, for each variable x ∈ dom(χ).
This obviously means that (F(χ))n is independent of (χ(x))t at any future instant t > n. This
corresponds precisely to the notion of behavioural functor in [5] and captures the realisability
constraint on plans discussed earlier. For an assignment χ ∈ Asg and a variable x ∈ Vr, the
F-extension with x of χ is the assignment ext(χ,F, x) ≜ χ[x 7→ F(χ)].

Similar to [14, 20], a team X ∈ Tm≜{X ⊆ Asg(V) | V ⊆ Vr} is a set of assignments on the
same domain. Teams defined over some prescribed V ⊆ Vr and those defined at least over V
are grouped in Tm(V) ≜ {X ∈ Tm | X ⊆ Asg(V)} and Tm⊇(V) ≜

{
X ∈ Tm

∣∣ X ⊆ Asg⊇(V)
}

.
The set of variables on which all the assignments inside a team X ∈ Tm are defined is denoted
by vr(X). The team {∅} only containing the empty assignment ∅ is called the trivial team. A
set of variables V ⊆ vr(X) is B-tied in X, for a set of bindings B ⊆ Bn, if V is B-tied in every
assignment χ ∈ X. For a response function F ∈ Rsp and a variable x ∈ Vr, the notion of F-
extension with x lifts from assignments to teams as follows: ext(X,F, x)≜{ext(χ,F, x) |χ ∈ X}.

As defined in [5, 4], a hyperteam X ∈ HTm ≜ {X ⊆ Tm(V) | V ⊆ Vr} is a set of teams.
Hyperteams defined over some given V ⊆ Vr and those defined at least over V are grouped
in HTm(V) ≜ {X ∈ HTm |X ⊆ Tm(V)} and HTm⊇(V) ≜ {X ∈ HTm |X ⊆ Tm⊇(V)}. The
set of variables shared by all teams inside a hyperteam X ∈ HTm is denoted by vr(X). The
hyperteam {{∅}} comprised only of the trivial team is called the trivial hyperteam.

The semantics of PL is based on four operations on hyperteams, that take care of the
various logical operators. The partitioning par(X) ≜ {(X1,X2) ∈ 2X × 2X |X1 ⊎ X2 = X}
handles the Boolean connectives, by reducing the evaluation of the entire formula w.r.t. X to
the evaluation of its Boolean components w.r.t. disjoint parts X1 and X2 of X. The filtering
flt(X,V,B) ≜ {X ∈ X | V is B-tied in X} w.r.t. the sets of variables V ⊆ vr(X) and bindings
B ⊆ Bn deals with the tying operators, by filtering out of X all teams X in which V is
not B-tied. The extension ext(X, x) ≜ {ext(X,F, x) | X ∈ X and F ∈ Rsp} w.r.t. the variable
x ∈ Vr takes care of the first-order quantifiers, by F-extending with x every team X in
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X, for all possible response functions F. Finally, the dualisation X swaps the role of the
two players in a hyperteam, allowing for connecting the two satisfaction relations and for
a symmetric treatment of all PL constructs. The swap is accomplished via the notion of
choice function Γ : X → Asg over a hyperteam X, which picks a single assignment from each
team: Chc(X)≜ {Γ : X → Asg | Γ(X)∈X, for each X∈X}. Then, the dualisation builds a new
hyperteam, whose teams are obtained by gathering all the assignments chosen by one of the
choice functions: X≜ {img(Γ) | Γ ∈ Chc(X)}. Observe that the trivial hyperteam is self-dual,
i.e., {{∅}} = {{∅}}. This approach bears strong similarity with the transformations between
DNF and CNF formulae, where a hyperteam can be viewed as a disjunction of conjunctive
clauses over assignments, if α = ∀∃, and as a conjunction of disjunctive clauses, if α = ∃∀.

The compositional semantics of PL based on hyperteams can then be defined as follows.

▶ Definition 4. For an implicitly given CGS G, Hodges’ alternating semantic relation
X |=α

φ for PL is inductively defined as follows, for all PL formulae φ, alternation flags
α ∈ {∃∀,∀∃}, and hyperteams X ∈ HTm⊇(free(φ)):
1. X |=∃∀

♭ψ, if there exists X ∈ X such that λ(play♭(χ)) |=LTL ψ, for all χ ∈ X;
2. X |=α ¬φ, if X ̸|=α

φ;
3. X |=∃∀

φ1 ∧ φ2, if X1 |=∃∀
φ1 or X2 |=∃∀

φ2, for all (X1,X2) ∈ par(X);
4. X |=∀∃

φ1 ∨ φ2, if X1 |=∀∃
φ1 and X2 |=∀∃

φ2, for some (X1,X2) ∈ par(X);
5. X |=∃∀ ⟨V⟩φ, if flt(X,V, bnd(φ)) |=∃∀

φ;
6. X |=∀∃ [V]φ, if flt(X,V, bnd(φ)) |=∀∃

φ;
7. X |=∃∀ ∃x. φ, if ext(X, x) |=∃∀

φ;
8. X |=∀∃ ∀x. φ, if ext(X, x) |=∀∃

φ;
9. X |=α

φ, if X |=α
φ, for all other cases.

The base case (Item 1) for the goals ♭ψ formalises the intuition for satisfaction relative to
the flag ∃∀: there exists a team X in X, all assignments χ of which induce a play play♭(χ) with
a labelling that satisfy the LTL formula ψ. One could equivalently define the semantics for
the dual flag ∀∃: for all X ∈ X, it holds that λ(play♭(χ)) |=LTL ψ, for some χ ∈ X. The choice
here is immaterial, thanks to the dualisation rule of Item 9. Negation, in accordance with the
game-theoretic interpretation, is dealt with in Item 2 by swapping the players associated with
the two internal levels of the hyperteam. The semantics of the Boolean connectives (Items 3
and 4), tying operators (Items 5 and 6), and first-order quantifiers (Items 7 and 8) relies
on the first three hyperteam operations discussed above. Finally, the semantics for all the
remaining cases reduce, thanks to Item 9, to one of the cases presented, after dualising both
the hyperteam and the alternation flag. It is immediate to observe that, for a fixed CGS
G, the truth value of a PL sentence φ, when evaluated w.r.t. the trivial hyperteam, does
not depend on the specific flag, i.e., {{∅}} |=∃∀

φ iff {{∅}} |=∀∃
φ, due to the self duality of

{{∅}}. We shall thus write G |=PL φ to assert both {{∅}} |=∃∀
φ and {{∅}} |=∀∃

φ.
The following result, whose proof is a trivial adaptation of the corresponding one in [5],

shows that, when no quantifiers are present, the hyperteam semantics bears a natural
correspondence with the Tarskian one.

▶ Theorem 5. For all PL quantifier-free formulae φ and hyperteams X ∈ HTm⊇(free(φ)):
1. X |=∃∀

φ iff there exists X ∈ X such that χ |= φ, for all χ ∈ X;
2. X |=∀∃

φ iff, for all X ∈ X, it holds that χ |= φ, for some χ ∈ X.

We can now show that, under the hyperteam semantics, the non-behavioural property
reported in the introduction is, as expected, no more satisfiable.
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▶ Example 6. Consider again the sentence φNB = ∀y.∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) and
the CGS G of Example 3. We want to show that G ̸|=PL φNB, meaning that φNB is not
behaviourally satisfiable on G, i.e., there is no realisable plan for z ensuring a match of the
truth values of p at time instants 1 and 2. Since free(φNB) = ∅, we evaluate φNB against the
trivial hyperteam {{∅}}, which, as observed before, implies that the alternation flag is of no
consequence. W.l.o.g., we choose α = ∀∃, thus focusing on proving {{∅}} ̸|=∀∃

φNB.
The rule for the universal quantifier ∀y (Item 8) requires to compute the extension

X ≜ ext({{∅}}, y) = {{y : 000ω}, {y : 010ω}, {y : 100ω}, {y : 110ω}, . . .} of {{∅}}, containing a
singleton team for each one of the uncountably many plans to assign to y. This results in

{{∅}} |=∀∃ ∀y.∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) iff X |=∀∃ ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p).

To apply the rule for the existential quantifier ∃z (Item 7), we first need to dualise the
hyperteam and switch to the ∃∀ flag (Item 9). Since every team of X is a singleton set, there
is only one possible choice function for it, thus, the result is

X |=∀∃ ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) iff X |=∃∀ ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p),

where X = {{y :000ω, y :010ω, y :100ω, y :110ω, . . .}} is the singleton hyperteam composed of
the unique team containing all plans for y. The quantifier ∃z and the alternation flag ∃∀ are
coherent, so we can proceed extending the hyperteam to obtain X′ ≜ ext

(
X, z

)
. The result is

X |=∃∀ ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) iff X′ |=∃∀ [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p),

where
{{
y :000ω

z :00ω ,
y :010ω

z :00ω ,
y :100ω

z :00ω ,
y :110ω

z :00ω , . . .

}
,

{
y :000ω

z :10ω ,
y :010ω

z :10ω ,
y :100ω

z :00ω ,
y :110ω

z :00ω , . . .

}
, . . .

}
is the hyperteam X′ containing one team ext(X,F, z) for every response function F ∈ Rsp,
where X = {y : 000ω, y : 010ω, y : 100ω, y : 110ω, . . .} is the unique team in X. For instance,
the first team in X′ is obtained by applying the constant function F(χ) = 0ω, while, for
the second one, we use the time-0-flip function F(χ) = (1 − (χ(y))0) · 0ω. In general, by
the behavioural restriction, the action (F(χ))0 may only depend on the action (χ(y))0.
Hence, every team X′ of X′ contains at least one assignment χ such that (χ(y))1 ̸= (χ(z))0,
which implies that (play(a,y)(χ))2 ̸= (play(a,z)(χ))1. Therefore, for all X′ ∈ X′, it holds
that χ ̸|= [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p), for some χ ∈ X′. As a consequence of Item 1 of
Theorem 5, it holds that X′ ̸|=∃∀ [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p), which, in turn, means that
{{∅}} ̸|=∀∃

φNB and, so, G ̸|=PL φNB, as expected.

4 Adequacy with Strategy Logic under Timeline Semantics

While the PL semantics – thanks to the tying operators – ensures that the strategies involved
are also realisable, we have shown for instance that the SL formula ∀y.∃z. ((a, y)X X p↔ (a, z)X p)
involves strategies that are not. As an immediate consequence, the two logics are not directly
comparable. Still, as shown in [16], for the one-goal fragment of SL, written SL[1g] here, a
formula is satisfiable iff it is satisfiable when quantifying only over realisable strategies [16].
Moreover, prenex formulae of SL can be given the so-called timeline semantics [11, 12] that
enforces realisability of the strategies. This semantics relies on the important notion of maps
– which are objects very close to Skolem functions.

We relate SL with timeline semantics and PL, by showing that the SL conjunctive goal
and the disjunctive goal fragments, respectively denoted by SL[cg] and SL[dg] (their union
is written SL[cg/dg]) can be translated into PL. Due to lack of space, we do not recall
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here the original timeline semantics of SL, instead we introduce a game-theoretic version
(whose correctness is established in Theorem 8), that we use to prove the soundness of this
translation. It is worth noting that the SL[cg] fragment encompasses the ATL* extension
studied in [10].

4.1 Strategy Logic under Timeline Semantics and Plan Logic
Syntax. The timeline semantics of SL is given for the prenex fragment of the language, in
which each formula starts with a quantifier prefix, namely a finite sequence ℘ of existential ∃X

and universal ∀X quantifiers, where each variable occurs at most once. The set of variables
occurring in a quantifier prefix ℘ is vr(℘), and we let vr∃(℘) (resp. vr∀(℘)) be the set of
existentially (resp. universally) quantified variables. In the rest of this section, we implicitly
consider SL under the timeline semantics, and thus every SL formula is in prenex form.

Formulae of the fragments SL[cg] and SL[dg] are, respectively, of the form ℘
∧

♭∈B♭ψ♭

and ℘
∨

♭∈B♭ψ♭ , where ℘ is a quantifier prefix, B is a set of bindings, and each ψ♭ is an LTL
formula. Observe that the one-goal fragment SL[1g] of SL is contained in the intersection
of SL[cg] and SL[dg], which amounts to requiring B to be a singleton set. We may use
notation SL[bg] to refer to the SL fragment allowing for arbitrary Boolean combinations of
goals.

Translation from SL to PL. The translation for the full SL[bg] fragment involves three
steps. First we encode each strategy variable with as many plan variables as there are goals in
the formula. These plan variables inherit the same quantifier as the original SL variable in the
resulting quantifier prefix. Second, to account for the fact that the corresponding plans must
be part of the same strategy, we tie such plan variables together by means of a tying prefix of
suitable tying operators. Third, we replace the strategy variables occurring in the goals of the
matrix, i.e. the quantifier free subformula following the prefix, with the corresponding plan
variable for that goal. More in detail, let Φ = ℘ϕ be a SL[bg] formula. Each quantifier QX in
℘ is transformed into a sequence of quantifiers of the form Qx♭ , one for every ♭ ∈ bnd(Φ) with
X ∈ vr(♭). Formally, the quantifier prefix of the translation is ℘SL2PL(Φ)≜((QXx♭)♭∈BX)X∈vr(℘)
with BX = {♭ ∈ bnd(φ) | X ∈ vr(♭)} and QX = ∃ if X ∈ vr∃(℘) and QX = ∀ if X ∈ vr∀(℘).

We now keep track of the fact that the various obtained variables x♭ stem from a single
variable X by tying them in a coherent manner via a tying prefix τSL2PL(Φ): when variable
X was existentially (resp. universally) quantified, the tying of the x♭ ’s is existential (resp.
universal) as follows. Writing VX ≜

{
x♭

∣∣ ♭ ∈ BX

}
for the set of plan variables associated

with the strategy variable X, we let τSL2PL(Φ) ≜ (⟨VX⟩)X∈vr∃(℘)([VX])X∈vr∀(℘). Finally, in
each original goal subformula ♭ψ, we replace every occurrence of variable X with the new
variable x♭ . The complete translation of the matrix ϕ (a Boolean combination of goals) is
denoted by ϕSL2PL(Φ). Gathering all the translation components we have defined, we obtain
SL2PL(Φ)≜℘SL2PL(Φ) τSL2PL(Φ)ϕSL2PL(Φ), whose size is polynomial in that of Φ. In the next
subsection we show that this translation is sound for both the conjunctive and disjunctive
goal fragments of SL. We refer the reader to the examples in Section 3 for instances of this
translation.

▶ Theorem 7. G|=SLΦ iff G |=SL2PL(Φ), for every SL[cg/dg] sentence Φ and CGS G.

The proof of Theorem 7 is reported in Section 4.2. A crucial step in the proof is
the introduction of a game-theoretic semantics for SL, which reduces the evaluation of
an SL[cg/dg] sentence Φ in a given CGS G to the evaluation of a corresponding PL
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formula GTSSL(Φ) in a modified CGS GTSSL(G,Φ). This construction turns out to be a
game-theoretic semantics for the conjunctive and disjunctive goal fragments of SL.

4.2 Game-theoretic Semantics of SL[cg/dg]
The game-theoretic semantics of SL[cg/dg] employs an additional operator agent, who plays
the role of the single Boolean operator involved in the quantifier-free matrix of the sentence
(either ∧ or ∨) and can choose the specific goal formula to be falsified/verified. Essentially,
the key idea behind the proposed semantics is that, as long as two bindings follow the same
play, the operator agent can postpone the decision of which of the corresponding goal formula
to falsify/verify.

Given a CGS G = ⟨Ag,Ac,Ps, vI , δ, λ⟩ and an SL[cg/dg] sentence Φ = ℘ϕ, we build
the new CGS GTSSL(G,Φ) and the new formula GTSSL(Φ) as follows, where BΦ = bnd(Φ).

▶ Construction 1. In CGS GTSSL(G,Φ), a position v̂ = (v,B) stems from a position v

in G equipped with a set B of bindings, precisely those that agree so far along the history
that led to v̂ . We set P̂s ≜ {v̂∃, v̂∀, v̂⊛} ∪ Ps × 2BΦ , where three special sink positions v̂∃, v̂∀
and v̂⊛ are explained later. The initial position of GTSSL(G,Φ) is v̂I = (vI , BΦ), since at
the beginning all the bindings agree on the empty history. The set of agents in GTSSL(G,Φ)
gathers the variable agents, one for each variable quantified in ℘, and the extra operator
agent, written x⊛, i.e. Âg≜vr(Φ)∪{x⊛}. The actions of GTSSL(G,Φ) include all the actions
of the original CGS G and a new binding action for each binding occurring in the original
formula Φ, i.e. Âc≜Ac ∪BΦ . The variable agents are only allowed to choose an action from
the original CGS , while binding actions are reserved to agent x⊛, who can only choose a
binding belonging to the decoration of the current position. To force each agent to always
pick the right type of action, we use the three sink positions v̂∃, v̂∀ and v̂⊛. Specifically,
position v̂∃ (resp. v̂∀) is reached every time the agent for a universally (resp. existentially)
quantified variable mischooses a binding action instead of a proper one. Conversely, v̂⊛
is reached any time agent x⊛ either mischooses a proper action or takes a binding action
outside of the decoration of the current position. Formally, we say that an action profile
c⃗ ∈ (Ac ∪ bnd(φ))vr(℘)∪{x⊛} is Q-ill-typed, for Q ∈ {∀,∃}, if the leftmost variable x in the
quantifier prefix ℘ such that c⃗(x) /∈ Ac is Q-quantified, and that c⃗ is ⊛-ill-typed in position
v̂ = (v,B) if c⃗(x) /∈ B. An action profile is well-typed in position v̂ if it is neither Q-ill-typed
nor ⊛-ill-typed in position v̂ . The notion of bindings that agree with the choice of x⊛ is
formalized as follows. We say that two bindings ♭1, ♭2 ∈ Bn (whose variables are in vr(℘)) are
indistinguishable at position v ∈ Ps w.r.t. action assignment c⃗ ∈ Acvr(℘) of variable agents,
in symbols ♭1 ≡c⃗

v ♭2, whenever δ(v, c⃗ ◦ ♭1) = δ(v, c⃗ ◦ ♭2), i.e., the same position is reached by
playing either c⃗ ◦ ♭1 or c⃗ ◦ ♭2. A move at position v̂ = (v,B) with well-typed action profile
c⃗ in v̂ leads to position û = (u,C) where u = δ(v, c⃗ ◦ ♭) for the choice ♭ = c⃗(x⊛) of agent
x⊛, and C ⊆ B retains only the bindings that are indistinguishable from ♭ (at v w.r.t. c⃗).
Formally,

δ̂(v̂ , c⃗)≜


v̂Q if v̂ = v̂Q , or v̂ ̸= v̂⊛ and c⃗ is Q-ill-typed, with Q ∈ {∃,∀};
v̂⊛ if v̂ = v̂⊛ or c⃗ is ⊛-ill-typed in v̂ ;
(δ(v, c⃗ ◦ ♭),

{
♭

′ ∈ B
∣∣ ♭′ ≡c⃗

v ♭
}

) with (v,B) = v̂ and ♭ = c⃗(x⊛), otherwise.
Finally, the label of v̂ = (v,B) inherits from the label of v in G with the extra propositions

q♭ , one for each binding ♭ ∈ B. Formally, λ̂(v̂∃) ≜ {p∃}, λ̂(v̂∀) ≜ {p∀}, λ̂(v̂⊛) ≜ ∅, and
λ̂((v,B)) ≜ λ(v) ∪

{
q♭ ∈ AP

∣∣ ♭ ∈ B
}

.

We now turn to the definition of GTSSL(Φ) that is to be evaluated on GTSSL(G,Φ).
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Since in the construction above variables turned into agents, the involved bindings all
collapse to the single identity binding ♭id, i.e. ♭id(x) = x for every x ∈ vr(℘) ∪ {x⊛}. As a
consequence, formula GTSSL(Φ) contains only one goal of the form ♭idψ, where the definition
of ψ depends on whether Φ belongs to SL[cg] or to SL[dg]. Here we illustrate the case
Φ = ℘

∧
♭∈B♭ψ♭ ∈ SL[cg], for which we set:

GTSSL(℘
∧
♭∈B

♭ψ♭) ≜ ℘∀x⊛ ♭id((F p∃) ∨ ((G ¬p∀) ∧
∧
♭∈B

((G q♭) → ψ♭))).

Intuitively, formula (F p∃) ∨ ((G ¬p∀) ∧
∧

♭∈B((G q♭) →ψ♭)) gives the win to the existential
agents as soon as a universal variable agent makes an ill-typed decision (this is the disjunct
F p∃ ). Otherwise, for the existential variable agents to win, they should never make an
ill-typed decision (see the G ¬p∀ subformula) and should guarantee each ♭-objective ψ♭ if the
obtained play coincides with the original play, namely the one induced by ♭ in the original
arena; note that in case operator agent chooses an ill-typed action, no such original play
exits.

A dual approach holds for the disjunctive case, that results in setting:

GTSSL(℘
∨
♭∈B

♭ψ♭) ≜ ℘∃x⊛ ♭id((G ¬p∀) ∧ ((F p∃) ∨
∨
♭∈B

((G q♭) ∧ ψ♭))).

The following theorem states that the above constructions provide a proper game-theoretic
semantics for SL[cg/dg].

▶ Theorem 8. G|=SLΦ iff GTSSL(G,Φ) |= GTSSL(Φ), for all SL[cg/dg] sentences Φ.

We sketch the proof road-map of Theorem 8 that consists in showing both (a) that the
truth of an SL[cg] formula entails the truth of its GTSSL translation, and (b) that the
truth of an SL[dg] formula entails the truth of its GTSSL translation. Observe that the if
direction of Theorem 8 follows from (the contrapositions of) Items a and b, the determinacy
of SL, and the duality of the GTSSL constructions for SL[cg] and SL[dg]. Recall that one
quantifies over strategies in SL and over plans in PL, the target setting of the game-theoretic
semantics. According to the hyperteam semantics of PL, quantifications of plan variables is
dealt with by means of responses to variable assignments. What one needs to do, then, is
design a correspondence between the strategies of the SL sentence and those responses.

▶ Theorem 9. G |=SL2PL(Φ) iff GTSSL(G,Φ) |=GTSSL(Φ), for all SL[cg/dg] sentences Φ.

Similarly to the preceding proof approach, we show that (a) the truth of SL2PL(Φ),
where Φ ∈ SL[cg], entails the truth of its GTSSL translation, and (b) the truth of SL2PL(Φ),
where Φ ∈ SL[dg], entails the truth of its GTSSL translation. Notice that both formulae are
in PL, but that formula SL2PL(Φ) is based on duplicates x♭ ’s of the original variables x in
Φ, while in GTSSL(Φ) the original variables of Φ are kept as is, with an extra operator agent
variable. Reconstructing a response for x from those of the x♭ ’s is made possible thanks to
the tying operators introduced in the formula SL2PL(Φ).

Theorems 8 and 9 entail Theorem 7.

5 Model Checking of Plan Logic

We finally consider the model-checking problem of four fragments of PL, namely PL[bg],
PL[cg], PL[dg], and PL[1g], similar to the ones exhibited for SL. Recall that the model-
checking problem of PL (and its fragments) is a decision problem that asks whether an
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input CGS is a model of an input PL sentence. In [6], it has been shown that, due to the
non-behaviouralness, i.e., unrealisability, of the Tarskian semantics of the Boolean-Goal
fragment of SL (SL[bg]) [16], its model-checking problem is tower complete in the alternation
of quantifiers. We prove instead that, despite its high expressive power, PL[bg] enjoys a
problem with a 2ExpTime-complete formula complexity, which is not harder than the
one for the much simpler logic ATL*. This result is obtained by reducing the evaluation
of a PL[bg] sentence φ in a given CGS G to the evaluation of a PL[1g] sentence φ̂ in a
modified structure Ĝ. Also, by tuning the reduction for PL[cg] and PL[dg], we obtain a
model-checking procedure with an optimal PTime-complete model complexity.

Goal Fragments of PL. The Boolean-Goal fragment of PL (PL[bg]) comprises all positive
Boolean combinations of formulae (in prenex form) ℘ τ ϕ, where ℘ is a quantifier prefix,
τ a tying prefix, and ϕ a positive Boolean combination of goals ♭ψ. The Conjunctive-
Goal fragment of PL (PL[cg]) (resp., Disjunctive-Goal fragment of PL (PL[dg])) further
restricts PL[bg] by requiring ϕ to be a conjunction (resp, disjunction) of goals. Finally, in
the One-Goal fragment of PL (PL[1g]), ϕ is assumed to be a single goal ♭ψ.

The encoding φNE of the existence of a Nash equilibrium discussed in Section 3 is an
example of PL[bg] formula, as well as the sentence φNB of Example 3. The sentence φW

stating the existence of a winning strategy in a two player game clearly belongs to PL[1g],
while the existence of a non strictly-dominated strategy can be expressed in PL[dg], as
witnessed by the encoding φNSD. By turning ¬φNSD into positive normal form, we obtain the
following PL[cg] sentence:

∀x. ∃x′.∀y1, y2. [x] ⟨x′⟩ [y1, y2] ((a, x′)(b, y1)¬ψ ∧ (a, x)(b, y2)¬ψ) .

In [1], it has been shown that Nash equilibria can actually be expressed in SL[cg]. Thus,
the corresponding translations into PL would result in sentences of the PL[cg] fragment.
Indeed, the conversion function SL2PL : SL → PL, when applied to an SL[cg/dg] sentence,
necessarily returns a PL[cg/dg] one. Finally, GTSSL : SL → PL always produces a PL[1g]
sentence.

The One-Goal Fragment. A simple inspection of the syntactic translation SL2PL : SL → PL
of the previous section shows that its application to an SL[1g] sentence results in a PL[1g]
one with the same quantifier prefix, the same goal, and an eliminable prefix of tying operators
on a single variable. Actually, a more general elimination property can be proven for arbitrary
tying operators in a PL[1g] formula ℘τ♭ψ: (a) if τ contains ⟨V⟩, with two variables x, y ∈ V,
where y is universally quantified after x in ℘, then the subformula originating in ⟨V⟩ is
equivalent to ⊥; (b) dually, if τ contains [V], with two variables x, y ∈ V, where y is
existentially quantified after x in ℘, then the subformula originating in [V] is equivalent to ⊤;
(c) in all other cases, the tying operator can be eliminated, by replacing all the variables in V
with the first one of V quantified in ℘. E.g., assuming ℘ = ∀x∃y∀z and ♭ = (a, x)(b, y)(c, y),
we have that (i) ℘ [x, y]⟨y, z⟩ ♭ψ ≡ ⊤, (ii) ℘ ⟨y, z⟩[x, y] ♭ψ ≡ ⊥, and (iii) ℘ ⟨x, y⟩[y, z] ♭ψ ≡
∀x. (a, x)(b, x)(c, x)ψ. Thus, the following tying-elimination property holds true.

▶ Proposition 10. Every sentence ℘τ♭ψ in PL[1g] has an equivalent sentence of the form
℘′♭′ψ.

By combining this proposition with Theorem 7, we obtain that the One-Goal fragments
of SL and PL semantically coincide.
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▶ Theorem 11. For every SL[1g] sentence Φ, there is a PL[1g] sentence φ and, vice versa,
for every PL[1g] sentence φ, there is an SL[1g] sentence Φ such that: |Φ| = Θ(|φ|) and
G |=SL Φ iff G |=PL φ.

Due to the known 22O(|φ|) · |G|O(1) complexity of the model-checking problem of SL[1g] [16,
Theorem 5.14], we can immediately derive the following theorem.

▶ Theorem 12. PL[1g] model-checking problem is 2-ExpTime-complete(|φ|) in the length
of the specification φ and PTime-complete(|G|) in the size of the model G.

The Boolean-Goal Fragment. The encoding underlying Theorem 8 of the game-theoretic
semantics for SL[cg/dg] into PL[1g] allowed us to prove the equivalence between these
logics and the corresponding fragments of PL. We shall leverage the same idea here to
solve the model-checking problem of PL[bg]. Given a CGS G and a sentence φ = ℘τϕ,
with binding set Bφ ≜ bnd(φ), we build a new CGS GTSBG(G, φ), whose plays are bundles
of plays from G, one per binding in ϕ. This is done, intuitively, by composing in parallel
as many copies of G as there are bindings in ϕ, resulting in positions that correspond to
vectors v̂ ∈ PsBφ of original positions of G. Agents of the new game coincide with the
variables quantified in ℘, while actions carries over unchanged. A move from a position v̂

to a position û is then a vector of parallel moves in G, one per original position contained
in v̂, while forbidding incoherent concurrent choices w.r.t. the tying operators occurring in
τ . Formally, an action assignment c⃗ ∈Acvr(℘) is V-incoherent at v̂ w.r.t. φ, where V ⊂ Vr,
if there are two variables x1, x2 ∈ V and two bindings ♭1, ♭2 ∈ Bφ, with x1 ∈ vr(♭1) and
x2 ∈ vr(♭2), such that v̂(♭1) = v̂(♭2), but c⃗(x1) ̸= c⃗(x2). In other words, a concurrent move c⃗
is V-incoherent at v̂ w.r.t. φ, if there are variables in V whose different associated actions in
c⃗ should have been equal, being part of bindings that are indistinguishable at v̂. We say that
c⃗ is ∃-incoherent (resp., ∀-incoherent) at v̂ w.r.t. φ if the leftmost set of variables V in τ ,
such that c⃗ is V-incoherent at v̂ w.r.t. φ, occurs in a tying operator of type ⟨V ⟩ (resp., [V ]).
Intuitively, c⃗ is ∃/∀-incoherent at v̂ w.r.t. φ if the first violated tying constraint specified in
τ is existential/universal. If c⃗ is neither ∃-incoherent nor ∀-incoherent at v̂ w.r.t. φ, we say
that c⃗ is coherent at v̂ w.r.t. φ.

▶ Construction 2. Given a CGS G = ⟨Ag,Ac,Ps, vI , δ, λ⟩ and a PL[bg] sentence φ, with
binding set Bφ ≜ bnd(φ), let GTSBG(G, φ) ≜ ⟨Âg, Âc, P̂s, v̂I , δ̂, λ̂⟩ be the CGS obtained as
follows: (a) agents are the variables quantified in φ, i.e., Âg≜vr(φ); (b) Âc≜Ac; (c) positions
are Bφ-indexed vectors of original positions from G, plus two distinguished sink positions
v̂∃ and v̂∀, i.e., P̂s ≜ {v̂∃, v̂∀} ∪ PsBφ ; (d) the initial position is the vI-constant vector, i.e.,
v̂I ≜ {♭ ∈ Bφ 7→ vI}; (e) every position, but the distinguished ones, are labelled with a
set of fresh atomic propositions, one per binding and original labelling, i.e., λ̂(v̂∃) ≜ {p∃},
λ̂(v̂∀) ≜ {p∀}, and λ̂(v̂) ≜ {p♭ ∈ AP | ♭ ∈ Bφ, p ∈ λ(v̂(♭))}; (f) the transition function δ̂ maps
every position v̂ ∈ P̂s \ {v̂∃, v̂∀} and action profile c⃗ ∈Acvr(φ) coherent at v̂ w.r.t. φ to position
û ∈ P̂s \ {v̂∃, v̂∀}, where, for each binding ♭ ∈ Bφ, the position û(♭) is the successor of v̂(♭)
in G following the action profile c⃗ ◦ ♭, which associates with each agent a ∈ Ag the action
stipulated by c⃗ for the variable ♭(a); formally,

δ̂(v̂, c⃗) ≜
{
v̂Q, if v̂ = v̂Q or c⃗ is Q-incoherent at v̂ w.r.t. φ, with Q ∈ {∃,∀};
û, otherwise, where û(♭) ≜ δ(v̂(♭), c⃗ ◦ ♭), for all ♭ ∈ Bφ.

The PL[1g] encoding of the game-theoretic semantics for the PL[bg] sentence φ = ℘τϕ is
relatively easy to formalise at this point: besides verifying the coherence constraints dictated
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by the tying prefix τ , we only need to check that the bundles of plays induced by plans in
the CGS GTSBG(G, φ) satisfy the matrix ϕ. Checking the constraints amounts to requiring
avoidance of the two distinguished sink positions v̂∃ and v̂∀. The verification of the matrix is
obtained by transforming ϕ into the LTL formula ϕ̂, where each goal ♭ψ is replaced by the
LTL formula ψ̂, in turn obtained by replacing in ψ every atomic proposition p with p♭, i.e.,
ϕ̂≜ ϕ

[
♭ψ/ψ̂

]
, with ψ̂ ≜ ψ [p/p♭]. Altogether, we get the following:

GTSBG(℘τϕ) ≜ ℘ ♭id

(
(F p∃) ∨

(
(G ¬p∀) ∧ ϕ̂

))
.

Since the original PL[bg] sentence φ and its PL[1g] translation GTSBG(φ) share the
same quantifier prefix ℘, thanks to Theorem 5, we can prove the correctness of the encoding,
on the basis that χ |= τϕ iff χ |= ♭id((F p∃) ∨ ((G ¬p∀) → ϕ̂)), for all χ ∈ Asg⊇(vr(℘)), which
can be done by structural induction on τϕ (using the simple semantic rules of Definition 2).

▶ Theorem 13. G |= φ iff GTSBG(G, φ) |= GTSBG(φ), for every PL[bg] sentence φ.

Once we observe that |GTSBG(G, φ)| = 2+ |G||bnd(φ)| and |GTSBG(φ)| = O(|φ|), thanks to
Theorem 12, we can derive the following result, where FPT means fixed-parameter tractable.

▶ Theorem 14. The model-checking problem for PL[bg] is 2-ExpTime-complete(|φ|) in
the length of the specification φ and FPT|φ|(|G|) in the size of the model G, with the length
of the specification φ as parameter, once the maximum number of bindings is fixed.

The Conjunctive & Disjunctive Goal Fragments. The simpler conjunctive/disjunctive
nature of goal combinations in PL[cg/dg] allows us to considerably improve on the model
complexity of the model-checking problem of PL[bg], by removing redundant information
from the position space, which is necessary only to handle arbitrary Boolean combinations.
This is done by suitably merging ideas from Constructions 1 and 2: from the former we
inherit the structure topology, while of the latter we use the criteria for determining the
compliance of the choices w.r.t. the tying operators (compliance issues are irrelevant in
Construction 1, since strategies are considered). We end-up with an ad hoc game-theoretic
semantics for PL[cg/dg], whose resulting CGS encoding GTSCDG(G, φ) is virtually identical
to Construction 1, where the notion of well-typed action assignment is generalised to take
into account the coherence constraints introduced for Construction 2. The sentence encoding
GTSCDG(φ) is also identical to the one used for SL[cg/dg] in association with Construction 1.

The following theorem can be obtained as a slight adaptation of the proof of Theorem 9.

▶ Theorem 15. G |= φ iff GTSCDG(G, φ) |= GTSCDG(φ), for every PL[cg/dg] sentence φ.

Once we observe that |GTSCDG(G, φ)| = 2 + 2|bnd(φ)| · |G| and |GTSCDG(φ)| = O(|φ|), we
can derive the following result, again thanks to Theorem 12.

▶ Theorem 16. The model-checking problem for PL[cg/dg] is 2-ExpTime-complete(|φ|)
in the length of the specification φ and PTime-complete(|G|) in the size of the model G.

6 Conclusion

We have introduced Plan Logic as a language for strategic reasoning, alternative to Strategy
Logic, based on the notion of plans instead of strategies. We show that this conceptual shift is
quite beneficial, as the intrinsic linear nature of plans allows for a semantics that guarantees
realisability of the satisfiable sentences via behavioural functional constraints. To this end,
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we propose hyperteams as a novel semantic framework for strategic reasoning, which enjoys
several important model-theoretic properties, e.g., compositionality and determinacy. Observe
that, for instance, the only semantics for SL that tackle the problem is the timeline semantics
proposed in [11, 12], which, however, exhibits neither compositionality nor determinacy. The
authors of [12] show, indeed, that such a semantics is not adequate already when applied
to SL[bg], as it is undetermined on sentences of that fragment. It is worth noting that the
hyperteam semantics, unlike the timeline one based on an ad hoc Skolem semantics, is a
principled approach that has been applied to model very general functional dependencies
among variables in other logics, such as QPTL [5] and Fol [4].

We showed that, thanks to the behavioural nature of the semantics, the model-checking
problem of PL[bg] is still 2-ExpTime-complete, in stark contrast with the non-elementarity
of the same problem for SL[bg] [6]. This further highlights the importance of enforcing
behavioural constraints. In addition, we study the conjunctive and disjunctive goal fragments
of PL in direct comparison with the respective fragments of SL. We show their expressive
equivalence, by introducing a novel game-theoretic semantics that allows for a direct compar-
ison between the two logics. Thanks to the connection between the game-theoretic semantics
of the PL[cg] and SL[cg], on the one hand, and of PL[dg] and SL[dg], on the other, we
can improve the model-checking complexity of those fragments to PTime-complete in
the size of the model (Theorem 16). Note that these fragments strictly include ATL*, a
prominent logic in strategic reasoning, which, in turn, is subsumed by the one-goal fragment
of both SL and PL. These fragments are quite interesting, as they enable several forms of
complex strategic reasoning, such as strategy domination and various forms of equilibria
(e.g., Nash equilibria).
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