
Quantifying over Trees in Monadic Second-Order Logic

Massimo Benerecetti, Laura Bozzelli, Fabio Mogavero
Università degli Studi di Napoli Federico II

emails: {massimo.benerecetti,laura.bozzelli,fabio.mogavero}@unina.it

Adriano Peron
Università degli Studi di Trieste

email: adriano.peron@units.it

Abstract—Monadic Second-Order Logic (MSO) extends First-
Order Logic (FO) with variables ranging over sets and quantifi-
cations over those variables. We introduce and study Monadic
Tree Logic (MTL), a fragment of MSO interpreted on infinite-
tree models, where the sets over which the variables range
are arbitrary subtrees of the original model. We analyse the
expressiveness of MTL compared with variants of MSO and MPL,
namely MSO with quantifications over paths. We also discuss
the connections with temporal logics, by providing non-trivial
fragments of the Graded µ-CALCULUS that can be embedded into
MTL and by showing that MTL is enough to encode temporal
logics for reasoning about strategies with FO-definable goals.

I. INTRODUCTION

The study of Monadic Second-Order Logic (MSO), namely
First-Order Logic (FO) extended with variables and quantifi-
cations ranging over sets, has attracted a lot of attention over
the years, mainly because of its high expressive power and
nice computational properties, particularly when interpreted
over words and trees. This, in turn, makes it a good fit as
a formal framework for reasoning about regular languages
and computational systems in general, whose set of possible
dynamic evolutions is often represented as a tree structure.

A seminal result in the field was originally provided by
Büchi [11], who proved the equivalence between the monadic
second-order logic of one successor with variables ranging
over finite sets and finite-state automata on finite words [48],
which he exploited to devise a decision procedure for that logic.
The result was then extended to the case of variables ranging
over arbitrary sets and finite-state automata on infinite words
in [12], [13]. Rabin [46] later proved the decidability of MSO
interpreted over binary trees, by means of an automata-theoretic
characterisation of the expressive power of logic on these
structures. This result was then extended by Walukiewicz [51],
[52], who provided a general framework for investigating MSO
by means of a class of automata that captures the expressive
power of MSO on trees with arbitrary (finite and infinite)
branching degree. By exploiting Rabin’s result, Muller and
Schupp [43], [44] have shown that MSO is decidable for
graphs with bounded tree-width, while Courcelle [20], [19],
[21] has conducted a quite extensive study of MSO on graphs
in connection with both graph theory and complexity theory.

Variants of MSO over tree models have also been studied.
Weak Monadic Second-Order Logic (WMSO) is one such
variant, where the second-order variables can only range over
finite sets. An automata-theoretic characterisation of WMSO
on binary trees has been proposed by Rabin [47] to show
that WMSO is strictly less expressive than MSO on this
class of structures. Automata for WMSO on these trees have

been proposed in [41], [42], where weak alternating tree
automata have been introduced. It has been shown, moreover,
that WMSO is equivalent to the alternation-free fragment of
Modal µ-CALCULUS [33], when direct access to the left and
right children of a node is available [3]. A deeper analysis
of this connection, when bisimulation invariant fragments are
considered, has been recently carried out in [26], [14], [15].

Another noteworthy variant is Monadic Path Logic [28], [29]
(MPL), where second-order variables are restricted to range
over paths. This restriction makes it strictly less expressive than
full MSO over trees. The interest attracted by MPL resides in
the fact that many temporal logics, most notably CTL*, can
be embedded into MPL [29], [50], [39], [40].

One needs to jump, however, directly to MSO in order
to be able to capture the full Modal µ-CALCULUS [32] and
its graded extension [34]. One reason for this is that one
can express path properties in µ-CALCULUS that are not
expressible in FOL and may be witnessed by non-connected
(i.e., non-convex) sets of nodes. One such property is the one
true at a node t if all the nodes at even positions from t
onward along some path satisfy a given atomic proposition p.
A µ-CALCULUS formula that collects all those witnesses is,
for instance, νX. (p ∧ ♢♢X), where the modal formula ♢φ
holds at a node if one of its successors satisfies φ. The nodes
of the tree which occur at even positions along some path are
not connected to one another and they are all witnesses of
the property. More importantly, those non-connected witnesses
depend on one another, in the sense that, for a node t to
witness the property, some node two steps further ahead must
also witness it and removing p from it would prevent t from
becoming a witness. The possible non-connectedness of the
witnesses is what makes the MSO ability to quantify over sets
of, possibly non-connected, nodes an essential feature. This
contrasts, for instance, with the property true at a node t when
there exists a path from it and a prefix π of that path where
q holds at the last node and p holds at all the previous ones.
This can be expressed in CTL* by the formula E(p U q). In
this case, indeed, if a node t satisfies the property, all the
nodes along the witnessing prefix up to the node witnessing
q satisfy it as well. Non-connected witnesses may exist for
this property too, however, they are all independent from each
other, in the sense that removing the property from a prefix π
(e.g., by removing p and q from the labelling of the connected
witnesses forming π) would bear no consequences for the other
witnesses outside π. All properties expressible in CTL* are of
this kind and quantifying over paths, which are connected sets
of nodes, suffices to capture them all in MPL.

It turns out that a similar connectedness property holds true
even for more expressive logics than CTL*, such as languages
for reasoning about strategies and games, like Alternating-Time
Temporal Logic (ATL*) [1], [2], Strategy Logic (SL) [16], [17],
[38], [36], [37], and Substructure Temporal Logic (STL*) [5],
[6]. For instance, it has been shown that STL*, an extension
of CTL* that implicitly allows for quantification over subtrees,
is strictly more expressive than CTL*, since the latter is
bisimulation invariant, while the former is not. By means
of subtree quantifications, STL* is able to model strategies
and, therefore, to encode games with FO-definable goals.

Guided by these observations, it appears natural to con-
sider the seemingly missing fragment of MSO in which
quantifications range over subtrees. In this work, we study
precisely this semantic restriction, that we call Monadic Tree
Logic, MTL for short, interpreted over non-blocking trees.
We provide a full picture of the expressive power of the
logic, together with some variants that restrict the range of
the second-order variables to finite trees only, giving rise
to Weak MTL (WMTL), and to infinite ones only, leading
to Co-Weak MTL (COWMTL), and compare them to the
corresponding variants of MSO and MPL. Each variant turns
out to be strictly less expressive than the corresponding MSO
variant and strictly more expressive than the analogous MPL
variant. We also show that MTL (resp., MSO, MPL) is
equivalent to COWMTL (resp., COWMSO, COWMPL) and
more expressive than WMTL (resp., WMSO, WMPL), when
interpreted over finitely-branching trees. Interestingly enough,
though, the situation changes drastically when we interpret
MSO and MTL on arbitrary trees that allow for infinitely-
branching degrees. In this case, the co-weak variants of each
logic strictly contain both the corresponding full and weak
versions, while the latter two become incomparable.

The second part of the article analyses the connections be-
tween variants of MTL and temporal logics. More specifically,
we identify a non-trivial fragment of the Graded µ-CALCULUS,
called One-Step Graded µ-CALCULUS (Gµ-CALCULUS[1S]),
that can be captured by MTL and can express properties
of trees that cannot be expressed in MPL. We also show
that the alternation-free fragment of Gµ-CALCULUS[1S]
(AFGµ-CALCULUS[1S]) can be captured by WMTL and not
by WMPL. Finally, we provide an encoding of STL* into
MTL, showing that quantification over trees is powerful enough
to reason about games with FO-definable goals.

II. BACKGROUND

Let N be the set of natural numbers. For a finite or infinite
word w over some alphabet, |w| denotes the length of w
(|w| = ∞ if w is infinite) and for all 0 ≤ i < |w|, w(i) is the
(i+ 1)-th letter of w.

Trees. A tree T is a subset of N∗ such that there is an element
τ0 ∈ T , called the root of T , so that:

• for each τ ∈ T , τ is of the form τ0 · τ ′ for some τ ′ ∈ N∗;
• for all τ, τ ′ ∈ N∗, if τ0 · τ ∈ T and τ ′ is a prefix of τ ,

then τ0 · τ ′ ∈ T .

Elements of T are called nodes. For τ ∈ T , a child of τ in T
is a node in T of the form τ ·n for some n ∈ N. A descendant
of τ in T is a node in T of the form τ · τ ′, for some τ ′ ∈ N∗.
A subtree of T is a subset of T which is a tree. The subtree
of T rooted at a node τ ∈ T is the tree consisting of all the
descendants of τ in T . A forest of T is a union of subtrees of
T . A path of T is a subtree π of T that is totally ordered by
the child-relation (i.e., each node of π has at most one child in
π). In the following, a path π of T is also viewed as a word
over T , in accordance with the total ordering in π induced by
the child relation. A tree T is said to be:

• finitely-branching if each node in T has finitely many
children in T (and infinitely-branching, otherwise);

• blocking if some node in T has no children in T (and
non-blocking, otherwise);

• a chain if it has a unique maximal path from the root
(each node has at most one child). Note that a path of a
tree corresponds to a chain.

• a complete binary tree if each node has exactly two
children;

• dense if it contains a subtree T ′ such that each node of
T ′ has a descendant in T ′ having at least two distinct
children in T ′.

Note that a dense tree has an uncountable number of infinite
paths or, equivalently, contains a complete binary tree as minor.
Dense trees correspond to thick trees in [10], [30].

Labelled trees and Kripke trees. For an alphabet Σ, a Σ-
labelled tree is a pair T = (T,Lab) consisting of a tree and a
labelling Lab : T 7→ Σ assigning to each node in T a symbol
in Σ. Note that the dynamic behaviour of a system starting
from an initial state can be modelled by a 2AP-labelled tree,
where AP is a finite set of atomic propositions. A node in the
tree T represents a state of the system and the root corresponds
to the initial state. The maximal paths in the tree starting from
the root correspond to the possible executions of the system
from the initial state. Moreover, a node of a tree is labelled by
elements in AP, representing the atomic predicates that hold at
the given state of the computation. Since we consider labelled
trees modelling the dynamic behaviour of reactive systems
and for these systems the executions are in general infinite,
we will restrict the interpretation of the considered logics to
labelled trees which are non-blocking. A non-blocking tree T
is infinite, and maximal paths in T are infinite as well.

Given a finite set AP of atomic propositions, a Kripke tree
over AP is a non-blocking 2AP-labelled tree.

Relative Expressiveness. Let M be a set of models, and L
and L′ be two logical languages interpreted over models in M.
Given two formulas φ ∈ L and φ′ ∈ L′, we say that φ and φ′

are equivalent if for each model M ∈ M, M satisfies φ iff M
satisfies φ′. The language L is subsumed by L′, denoted L ≤ L′,
if each formula in L has an equivalent formula in L′. The
language L is strictly less expressive than L, written L < L′, if
L ≤ L′ and there is a L′-formula which has no equivalent in L.
Two logics L and L′ are expressively incomparable, denoted
by L ̸∼ L′, if both L ̸≤ L′ and L′ ̸≤ L. Finally, two logics L

and L′ are expressively equivalent, denoted L ≡ L′, if both
L ≤ L′ and L′ ≤ L.

Counting-CTL*. We recall syntax and semantics of Counting-
CTL* (CCTL* for short [40]), which extends the classic
branching-time temporal logic CTL* [24] by counting opera-
tors. The syntax of CCTL* is given by specifying inductively
the set of state formulas φ and the set of path formulas ψ over
a given finite set AP of atomic propositions:

φ ::= ⊤ | a | ¬φ | φ ∧ φ | Eψ | Dnφ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ Uψ

where a ∈ AP, X and U are the standard “next" and “until"
temporal modalities, E is the existential path quantifier, and Dn

is the counting operator with n ∈ N. The language of CCTL*
consists of the state formulas of CCTL*. We also use the
standard shorthands Aφ≜ ¬E¬φ (“universal path quantifier")
and Fψ ≜⊤ Uψ (“eventually").

The semantics is given w.r.t. Kripke trees T = (T,Lab) (over
AP). For a node τ of T , a path π of T , and 0 ≤ i < |π|, the
satisfaction relations T , τ |= φ, for state formulas φ (meaning
that φ holds at node τ of T), and T , π, i |= ψ, for path
formulas ψ (meaning that ψ holds at position i of the path π
in T), are inductively defined as follows (Boolean connectives
are treated as usual):

T , τ |= a ⇔ a ∈ Lab(τ);
T , τ |= Eψ ⇔ T , π, 0 |= ψ for some path π of T

starting at node τ
T , τ |= Dnφ ⇔ there are at least n distinct children

τ ′ of τ in T such that T , τ ′ |= φ
T , π, i |= φ ⇔ T , π(i) |= φ
T , π, i |= Xψ ⇔ i+ 1 < |π| and T , π, i+ 1 |= ψ
T , π, i |= ψ1 Uψ2 ⇔ for some i ≤ j < |π|: T , π, j |= ψ2

and T , π, k |= ψ1 for all i ≤ k < j.

A Kripke tree T satisfies a state formula φ, written T |= φ, if
T , τ0 |= φ, where τ0 is the root of T . Given a non-blocking
tree T , we write T |= φ to mean that T,Lab∅ |= φ, where
Lab∅(τ) = ∅ for all τ ∈ T .

We also consider two semantic variants of CCTL*, that
we call Weak CCTL* (WCCTL*) and coWeak CCTL*
(COWCCTL*), where the path quantifiers E and A range over
finite paths and infinite paths, respectively, starting from the
current node. Standard CTL* [24] is the syntactical fragment
of COWCCTL* where the counting operators are not allowed.

III. MONADIC TREE LOGIC

We start by defining in Section III-A the three main logics
we shall consider: MSO, MTL, and MPL. The three languages
do not differ at the syntactic level, but only on the range of
quantification of the second-order variables. For convenience,
though, we provide a unified language (MSOL), where the
second-order quantifiers are decorated with a symbol α that
explicitly indicates the domain of the quantified variable: S for
sets, T for trees, and P for paths.

This section is mainly devoted to the analysis of the
expressiveness of the various semantic fragments of MSOL

COWMSO MSO

WMSO

COWMTL MTL

WMTL

COWMPL MPL

WMPL

[47]

Cor 1

Thm 2
Thm 7

Cor 2

Cor 3
?

Thm 3

Thm 6

Thm 7

Thm 3

Figure 1: Expressiveness results for MSOL over finitely-
branching Kripke trees.

interpreted over non-blocking trees. In Section III-B, we
compare the expressiveness of MPL, MTL, and MSO in the
general case, where second-order variables are interpreted over
both finite and infinite paths, subtrees, and sets, respectively, of
the considered model tree. Then, in Sections III-C and III-D,
we consider similar expressiveness issues for the weak semantic
variant (second-order variables range over finite paths, finite
subtrees, and finite sets, respectively) and the co-weak semantic
variant (second-order variables range over infinite paths, infinite
subtrees, and infinite sets, respectively).

COWMSO

MSO WMSO

COWMTL

MTL WMTL

MPL COWMPL

WMPL

Thm 6 Thm 6

Thm 4

Cor 1 Thm 2

Thm 7 Thm 7

Thm 4

Cor 2

Cor 3

Thm 3

Thm 3

Figure 2: Expressiveness results for MSOL over arbitrary
Kripke trees.

Finally, in Section III-E we consider expressiveness issues
of weak semantics versus co-week semantics. The complete
picture of results is summarised in Figure 1 for the case of
finitely-branching Kripke trees and in Figure 2 for the general
case. The two figures have to be interpreted as follows. An edge
connecting two logics has the following meaning: if the edge
has a single arrow, then the target logic is more expressive
than the source; otherwise, the two logics are expressively
equivalent. If there is no edge between two distinct logics and
no relation is deducible by the other edges, then the two logics
are expressively incomparable. A red edge decorated with a
question mark indicates a currently open question.

A. Monadic Second-Order Logics

For a given finite set AP of atomic propositions, MSOL is
a language defined over the signature {≤} ∪ {Pa | a ∈ AP},

where second-order quantification is restricted to monadic
predicates, ≤ is a binary predicate, and Pa is a monadic
predicate for each a ∈ AP.

Definition 1 (MSOL Syntax). Given a finite set AP of atomic
propositions, a finite set Vr1 of first-order variables (or node
variables), and a finite set Vr2 of second-order variables (or
set variables), the syntax of Monadic Second-Order/Tree/Path
Logic (MSO/MTL/MPL, for short) is the set of formulae built
according to the following grammar, where p ∈ AP, x, y ∈ Vr1,
and X ∈ Vr2:

φ := Pa(x) | x ≤ y | x ∈ X | ¬φ | φ ∧ φ | ∃x. φ | ∃αX.φ,

where p ∈ AP, x, y ∈ Vr1, X ∈ Vr2, and α is S for MSO, T
for MTL, and P for MPL.

Note that MSO (resp., MTL, MPL) corresponds to the
syntactical fragment of MSOL where the second-order exis-
tential quantification takes only the form ∃S (resp., ∃T, ∃P).
We also exploit the standard logical connectives ∨ and → as
abbreviations, the universal first-order quantifier ∀x, defined
as ∀x.φ≜ ¬∃x.¬φ, and the universal second-order quantifier
∀αX , defined as ∀αX.φ≜¬∃αX.¬φ. We may also make use
of the shorthands (i) x = y for x ≤ y ∧ y ≤ x, (ii) x < y for
x ≤ y ∧ ¬(y ≤ x); (iii) ∃x ∈ X.φ for ∃x. (x ∈ X ∧ φ), and
(iv) ∀x ∈ X.φ for ∀x. (x ∈ X → φ).

As usual, a free variable of a formula φ is a variable
occurring in φ that is not bound by a quantifier. A sentence is a
formula with no free variables. The language of MSOL consists
of its sentences. We also consider the first-order fragment FO
of MSOL, where second-order quantifiers and second-order
variables are not allowed.

Semantics of MSOL. Formulas of MSOL are interpreted over
Kripke trees over AP. A Kripke tree T = (T,Lab) induces the
relational structure with domain T , where the binary predicate
≤ corresponds to the descendant relation in T , and Pa denotes
the set {τ ∈ T : a ∈ Lab(τ)} of a-labelled nodes.

Let us fix a Kripke tree T = (T,Lab) over AP. A first-
order valuation for the tree T is a mapping V1 : Vr1 7→ T
assigning to each first-order variable a node of T . A second-
order valuation for the tree T is a mapping V2 : Vr2 7→ 2T

assigning to each second-order variable a subset of T .

Definition 2 (MSOL Semantics). Given a MSOL formula φ, a
Kripke tree T = (T,Lab) over AP, a first-order valuation V1

for T , and a second-order valuation V2 for T , the satisfaction
relation T ,V1,V2 |= φ, meaning that T satisfies the formula
φ under the valuations V1 and V2, is defined as follows (the
treatment of Boolean connectives is standard):

T ,V1,V2 |= Pa(x) ⇔ a ∈ Lab(V1(x));
T ,V1,V2 |= x ≤ y ⇔ V1(y) is a descendant of V1(x) in T ;
T ,V1,V2 |= x ∈ X⇔ V1(x) ∈ V2(X);
T ,V1,V2 |= ∃x.φ ⇔ T,Lab,V1[x 7→ τ],V2 |= φ for some

τ ∈ T ;

T ,V1,V2 |= ∃SX.φ⇔ T ,V1,V2[X 7→ S] |= φ for some set
of nodes S ⊆ T ;

T ,V1,V2 |= ∃TX.φ⇔ T ,V1,V2[X 7→ T ′] |= φ for some
subtree T ′ of T ;

T ,V1,V2 |= ∃PX.φ⇔ T ,V1,V2[X 7→ π] |= φ for some path
π of T.

where for a first-order valuation V1 for T , a node τ ∈ T ,
and a first-order variable x ∈ T , V1[x 7→ τ] denotes the first-
order valuation defined as follows: V1[x 7→ τ](x) = τ and
V1[x 7→ τ](y) = V1(y) if y ̸= x. The meaning of notation
V2[X 7→ S], for a second-order valuation V2 for T , a set
S ⊆ T , and a second-order variable X is similar.

Note that the satisfaction relation T ,V1,V2 |= φ, for fixed T
and φ, depends only on the values assigned by V1 and V2 to the
variables occurring free in φ. In particular, if φ is a sentence,
we say that T satisfies φ, written T |= φ, if T ,V1,V2 |= φ
for some valuations V1 and V2. In this case, we also say that
T is a model of φ. A non-blocking tree T satisfies a sentence
φ, written T |= φ, if (T,Lab∅) |= φ, where Lab∅ assigns to
each T -node the empty set.

Basic predicates expressible in MSOL. In the following we
define some useful standard predicates which can be expressed
in MSOL by using only first-order quantification:

• the second-order binary predicates X ⊂ Y , X ⊆ Y ,
X = Y , X ̸= Y (of expected meaning). For instance,
X ⊆ Y can be expressed as ∀x. (x ∈ X → x ∈ Y);

• the child relation is definable in MSOL by the binary
predicate child(x, y)≜ x < y ∧ ¬∃z. (x < z ∧ z < y);

• path(X) (resp., path∞(X), resp., pathf (X)) capturing
the subsets of the given tree which are paths (resp., infinite
paths, resp., finite paths). For example:

path(X) ≜ ∀x ∈ X.∀y ∈ X. ((x ≤ y ∨ y ≤ x)∧
((x < y ∧ ¬child(x, y)) → ∃z ∈ X. (x < z ∧ z < y)).

• the property of being a tree is captured by the second-order
predicate:

tree(X) ≜ ∃x. ∀y. (x ≤ y) ∧ ∀x ∈ X.∀y ∈ X.
((x < y ∧ ¬child(x, y)) → ∃z ∈ X. (x < z ∧ z < y)).

Weak and coWeak semantic variants. We also consider
the Weak semantics variants of MSO, MTL, and MPL, de-
noted WMSO, WMPL and WMTL, respectively. In WMSO,
second-order variables are interpreted as finite sets of the
given tree. Similarly, in WMTL and WMPL, second-order
quantification ranges over finite subtrees and finite paths,
respectively, of the given tree. Finally, we consider the
coWeak semantics variants of MSO, MTL, and MPL (written
COWMSO, COWMPL and COWMTL, respectively) where
second-order variables are interpreted as infinite sets of the
given tree (infinite paths and infinite subtrees in the case of
COWMPL and COWMTL, respectively).

B. Expressiveness under Full Quantifications

In this section, we compare the expressiveness of the logics
MPL, MTL, and MSO. We prove that MTL strictly lies

between MPL and MSO even in the case of finitely-branching
setting (i.e., over the class of finitely-branching Kripke trees).
First, we show that MTL is strictly less expressive than MSO.
In fact, the result already holds over the class of 2AP-labelled
infinite chains. For this subclass of Kripke trees, quantification
over trees reduces to quantification over paths, which in turn
can be simulated by first-order quantification [13]. Thus, since
FO < MSO even over infinite chains, we obtain the following
result.

Proposition 1. Over 2AP-labelled infinite chains, it holds that:
• MTL ≡ WMTL ≡ COWMTL ≡ FO < MSO, and
• by [13], MSO ≡ WMSO ≡ COWMSO.

Since the class of chains can be trivially captured in FO,
by Proposition 1, the following hold.

Proposition 2. For all L ∈ {MSO,WMSO, COWMSO}
and L′ ∈ {MTL,WMTL, COWMTL}, L ̸≤ L′ even in the
finitely-branching setting.

Clearly, MTL is subsumed by MSO (the predicate tree(X)
can be expressed in MSO). Therefore, by Proposition 2, we
obtain the desired result.

Corollary 1. MTL < MSO even in the finitely-branching
setting.

Next, we show that MPL is strictly less expressive than
MTL. Evidently, MPL is subsumed by MTL (path quantifi-
cation can be simulated by tree quantification and first-order
quantification). In order to show that MTL is not subsumed by
MPL, we prove that the density property (characterising the
class of dense non-blocking trees) is definable in MTL but not
in MPL. The density property can be expressed in MTL as:

∃TX.∀x ∈ X.∃x1 ∈ X.∃x2 ∈ X.
(x < x1 ∧ x < x2 ∧ ¬x1 ≤ x2 ∧ ¬x2 ≤ x1).

To prove that the density property cannot be expressed in
MPL, we need a preliminary result that generalises the
known expressiveness equivalence between COWMPL and
COWCCTL* [40]. The easy translation of COWCCTL* into
COWMPL can be trivially adapted to show that every CCTL*
(resp., WCCTL*) formula can be translated in linear time into
an equivalent MPL (resp., WMPL) formula. By adapting the
compositional argument in [40] for showing that COWMPL
is subsumed by COWCCTL*, we obtain the following result.

Proposition 3. MPL ≡ CCTL* and WMPL ≡ WCCTL*.

For each n ≥ 1, we define two non-empty classes NDn

and Dn of non-blocking finitely-branching trees such that the
following holds for each n > 1:

• NDn contains only isomorphic trees which does not
satisfy the density property;

• Dn contains only isomorphic trees which satisfy the
density property;

• no state formula φ in CCTL* with size smaller than n
distinguishes the classes NDn and Dn, i.e., for all T ∈ Dn

and T ′ ∈ NDn, T |= φ iff T ′ |= φ.

Thus, by Proposition 3, it follows that the logic MPL cannot
capture the density property.

In the following, the size |φ| of a CCTL* formula φ is
defined as the length of the string for representing φ, where
we assume that the natural numbers k in the counting operators
Dk are encoded in unary. In particular, |Dkφ| = k + 1 + |φ|.
The classes NDn and Dn are defined by induction on n ≥ 1:

• ND1 and D1 coincide and consist of the infinite chains;
• for each n > 1, NDn is the smallest set of non-blocking

trees T satisfying the following conditions:
– the root of T , called NDn-node, has exactly n·(n−1)+1

distinct children
τ1,1, . . . , τ1,n, . . . , τn−1,1, . . . , τn−1,n, τn;

– for all ℓ ∈ [1, n−1], the subtrees rooted at the children
τℓ,1, . . . , τℓ,n are in NDℓ;

– the subtree rooted at τn is in NDn.
• for each n > 1, Dn is the smallest set of non-blocking

trees T satisfying the following conditions:
– the root of T , called Dn-node, has exactly n·(n−1)+2

distinct children
τ1,1, . . . , τ1,n, . . . , τn−1,1, . . . , τn−1,n, τn, τ

′
n;

– for all ℓ ∈ [1, n−1], the subtrees rooted at the children
τℓ,1, . . . , τℓ,n are in NDℓ (note NDℓ and not Dℓ);

– the subtrees rooted at τn and τ ′n are in Dn.

ND2

ND1ND1 ND2

D2

D2ND1ND1 D2

Figure 3: The classes of trees NDn and Dn for n = 2.

By construction, the following holds.

Lemma 1. For all n > 1, the trees in Dn are dense, while
those in NDn are not.

Proof. Let n > 1, T ∈ Dn, and S be the subset of T consisting
only of Dn-nodes. By construction, S is a complete binary
tree. Hence, T is dense. Next, we show that for all k ≥ 1 and
T ∈ NDk, T is not dense. Hence, the result follows. The proof
is by induction on k. The case k = 1 is obvious since, in this
case, T is an infinite chain. Now, let k > 1. We assume that T
is dense, and derive a contradiction. Hence, there is a subtree
S of T satisfying the following condition:

• reachability invariance; every node of S has a descendant
in S having at least two distinct children in S.

By construction, one of the following two conditions occurs:
• there is 1 ≤ h < k and T ′ ∈ NDh such that S ⊆ T ′. By

the induction hypothesis, T ′ is not dense, and we derive
a contradiction;

• for some node τ of S, the subtree S′ of S rooted at node
τ is a subset of a tree T ′ in NDh for some 1 ≤ h < k.
Note that like S, S′ satisfies the reachability invariance

condition. Conversely, by the induction hypothesis, T ′ is
not dense, reaching a contradiction.

We can show that any CCTL* state formula φ does not
distinguishes the classes Dn and NDm for all n,m ≥ |φ|.
The proof is by structural induction on the size of φ. In the
evaluation of the temporal and counting modalities, we need
to compare representatives of the classes Di and NDj for
(possibly distinct) indexes i and j satisfying the invariant i, j ≥
|ψ|, where ψ is the currently processed subformula of φ.

Lemma 2. Let φ be a CCTL* state formula. Then, for all
m,n > 1 such that min(m,n) ≥ |φ| and for all T, T ′ ∈ Dn ∪
Dm ∪NDn ∪NDm, the following holds: T |= φ⇔ T ′ |= φ.

Thus, by Lemmata 1–2 and the equivalence MPL ≡ CCTL*,
the following holds.

Theorem 1. The density property is not expressible in MPL
even in the finitely-branching setting.

Since the density property can be expressed in MTL, and
MPL is trivially subsumed by MTL, by Corollary 1 and
Theorem 1, we obtain the following expressiveness hierarchy
for the logics MPL, MTL, and MSO.

Corollary 2. MPL < MTL < MSO even in the finitely-
branching setting.

C. Expressiveness under Weak Quantifications

In this section, we compare the expressiveness of the weak
semantic variants of MSO, MTL, and MPL. As a main result,
we establish that WMTL strictly lies between WMPL and
WMSO even in the finitely-branching setting. Clearly, WMTL
is subsumed by WMSO (the requirement that a second-order
variable ranging over finite sets captures only finite subtrees
of the given tree can be expressed by using only first-order
quantification). Thus, by Proposition 2, the following holds.

Theorem 2. WMTL < WMSO even in the finitely-branching
setting.

Next, we show that WMPL < WMTL. First, we observe
that since quantification over finite paths can be expressed
in FO, WMPL and FO are expressively equivalent and
WMPL ≤ WMTL. In order to show that WMTL is more
expressive than WMPL in the general case, we consider the
infinitely-branching property requiring that a tree is infinitely-
branching. This property can be expressed in MTL under the
weak semantics as ¬∀x.∃TX.∀y. (child(x, y) → y ∈ X). On
the other hand, it is known by [49] that every satisfiable MSO
formula is satisfied by a finitely-branching Kripke tree. Thus,
since WMPL, MPL and MTL are subsumed by MSO, the
following holds.

Proposition 4. The infinitely-branching property is not defin-
able in the logics MSO, MTL, MPL, and WMPL.

In order to show that WMTL is not subsumed by WMPL
even in the finitely-branching setting, we show that for
each atomic proposition a, the property (called a-acceptance)

expressed by the CTL* formula AF a is not definable in WMPL.
Note that the a-acceptance property captures the Kripke trees
such that each infinite path from the root visits a node labeled
by a. In the finitely-branching setting, this property can be
expressed in WMTL by requiring that there is a finite tree-
prefix Ta of the given tree T such that (i) each leaf of Ta
is labeled by proposition a, and (ii) for each non-leaf node
τ ∈ Ta, each child of τ in T is child of τ in Ta as well.

In the following, we show that the a-acceptance property
is not expressible in WMPL. By Proposition 3, it suffices to
prove that a-acceptance is not definable in WCCTL*. show
that the CTL* formula AF a (called
For a WCCTL* formula ψ, we say that ψ is balanced if:

• for each subformula ψ1 Uψ2 of ψ, it holds that |ψ1| =
|ψ2|;

• for each subformula Eθ of ψ, θ is of the form θ1 ∧ θ2
with |θ1| = |θ2|.

Proving the inexpressiveness result of a-acceptance for
balanced WCCTL* state formulas allows us to state it for
any WCCTL* state formula, since (by using conjunctions of
⊤) a WCCTL* state formula can be trivially converted into
an equivalent balanced WCCTL* state formula.

A3

A2A2 A2

NA3

A3NA3 A3 A3

Figure 4: The classes of Kripke trees An and NAn for n = 3.

Let AP = {a}. For each n ≥ 1, we define two non-empty
classes An and NAn of finitely-branching Kripke trees over
AP such that the following holds for each n ≥ 1:

• An contains only isomorphic Kripke trees which satisfy
the a-acceptance property;

• NAn contains only isomorphic Kripke trees which does
not satisfy the a-acceptance property;

• no balanced state formula φ in WCCTL* with size
smaller than n distinguishes the classes NAn and An,
i.e., for all (T,Lab) ∈ An and (T ′,Lab′) ∈ NAn,
(T,Lab) |= φ iff (T ′,Lab′) |= φ.

The classes An and NAn are defined by induction on n ≥ 1:
• A1 consist of the labeled infinite chains where each node

is labeled by proposition a (a-node or A1-node);
• for each n > 1, An is the smallest set of Kripke trees
(T,Lab) satisfying the following conditions:
– the root of T , called An-node, has empty label and

exactly n distinct children τ1, . . . , τn;
– for all ℓ ∈ [1, n], the Kripke subtree rooted at the child
τi is in An−1.

• for each n ≥ 1, NAn is the smallest set of Kripke trees
(T,Lab) satisfying the following conditions:
– the root of T , called NAn-node, has empty label and

exactly n+ 1 distinct children τ0, τ1, . . . , τn;

– for all ℓ ∈ [1, n], the Kripke subtree rooted at the child
τi is in An;

– the Kripke subtree rooted at τ0 is in NAn.
Note that since Kripke trees are infinite, it makes sense that

a Kripke tree (T,Lab) and its subtree rooted at a child of the
root are isomorphic. Hence, the class NAn is well defined.

Let n ≥ 1. By construction, for each Kripke tree in An, each
infinite path from the root has a suffix visiting only a-nodes.
On the other hand, for each Kripke tree in NAn, there is an
infinite path from the root visiting only nodes with empty label
(in particular, NAn-nodes). Hence, the following holds.

Lemma 3. For all n ≥ 1, the Kripke trees in An satisfy the
a-acceptance property, while the Kripke trees in NAn not.

We can show that any balanced WCCTL* state formula φ
does not distinguish the classes An and NAn for all n ≥ |φ|.

Lemma 4. Let φ be a balanced WCCTL* state formula. Then
for all n > |φ|, (T,Lab) ∈ NAn and (T ′,Lab′) ∈ An, it holds
that (T,Lab) |= φ if and only if (T ′,Lab′) |= φ.

Thus, by Lemmata 3 and 4 and Proposition 3, it follows
that the a-acceptance property cannot be expressed in WMPL.
Moreover, note that MPL ≡ COWMPL. This is because (i)
quantification over finite paths can be expressed in FO, and
(ii) the requirement that a path is infinite can be defined in
MPL by using only first-order quantifications. Thus, since
a-acceptance can be expressed in MPL, we easily obtain the
following result.

Theorem 3. No WMPL formula can express the a-acceptance
property. Moreover, it holds that WMPL ≡ FO, MPL ≡
COWMPL, and WMPL < MPL, even in the finitely-
branching setting.

Since WMTL can express the infinitely-branching property
and, in the finitely-branching setting, the a-acceptance property
too, by Theorem 2, Proposition 4, and Theorem 3, we obtain
the following expressiveness hierarchy for weak variants.

Corollary 3. WMPL < WMTL < WMSO even in the
finitely-branching setting.

D. Expressiveness under coWeak Quantifications

In this section, we establish an expressiveness hierarchy for
the coWeak versions of the considered logics MPL, MTL, and
MSO similar to the one for the corresponding Weak versions.

Theorem 4. COWMPL < COWMTL < COWMSO even in
the finitely-branching setting.

Proof. Evidently, COWMPL ≤ COWMTL (quantification
over infinite paths can be simulated by quantification
over infinite trees and first-order quantification). Moreover,
COWMTL ≤ COWMSO (the requirement that a second-
order variable in COWMSO captures only infinite subtrees
of the given tree can be expressed by using only first-order
quantification). Since COWMPL ≡ MPL (Theorem 3), by
Theorem 1, COWMPL cannot express the density property

even in the finitely-branching setting. On the other hand,
the density property is expressible in COWMTL. Indeed,
the MTL formula used in Section III-B for expressing the
density property is equivalent to its coWeak semantics variant.
Moreover, by Proposition 2, COWMSO is not subsumed by
COWMTL. Hence, the result directly follows.

E. Weak Quantifications versus coWeak Quantifications

In this section, we compare the logics MTL and MSO with
their corresponding coWeak and Weak semantics variants.

It is known by [10], [30] that the density property cannot
be expressed in WMSO even in the finitely-branching setting.
Thus, being WMTL ≤ WMSO, the previous inexpressiveness
result holds for WMTL as well. On the other hand, we have
seen in Section III-B that the density property can be instead
expressed in MTL (hence, in MSO as well). Moreover, in
Section III-C, we have proved that the infinitely-branching
property can be expressed in WMTL (hence, in WMSO too)
but not in MSO and MTL (see Proposition 4). It follows that
over arbitrary Kripke trees, WMTL and MTL (resp., WMSO
and MSO) are expressively incomparable.

However, in the finitely-branching setting, it is known that
WMSO is subsumed by MSO. Indeed, in this setting, the
predicate fin(X) capturing the finite sets of the given tree
can be expressed in MSO by the formula

∃SY.
(
tree(Y) ∧X ⊆ Y ∧ ¬∃SZ. (Z ⊆ Y ∧ path∞(Z)).

Moreover, in the finitely-branching setting, assuming that X is
interpreted as a subtree of the given tree, the predicate fin(X),
can be defined in MTL as ¬∃TY. (Y ⊆ X∧path∞(Y)). Thus,
by Proposition 2, we obtain the following result.

Theorem 5. MSO ̸∼ WMSO, MTL ̸∼ WMTL, MSO ̸∼
WMTL, and MTL ̸∼ WMSO. In the finitely-branching setting,
WMSO < MSO, WMTL < MTL, and MTL ̸∼ WMSO.

Now, we show that second-order quantification over finite
sets can be simulated in COWMSO by using the following
characterisation of the finite subsets of a non-blocking tree.

Lemma 5. Let T be a non-blocking tree and S ⊆ T . Then, S
is finite iff the following condition is fulfilled:
(*) there exist an infinite tree T∞ ⊆ T , an infinite forest

F∞ ⊆ T , and an infinite set Y∞ ⊆ T such that:
– T∞ is finitely-branching;
– F∞ ⊆ Y∞ ⊆ T∞;
– for each infinite path π of T∞, there is a suffix of π

which visits only nodes of F∞;
– S = T∞ \ Y∞.

Proof. If Condition (∗) is satisfied, then S is contained in the
tree Tf obtained from T∞ by removing all the nodes of the
forest F∞. Since T∞ is finitely-branching and each infinity
path of T∞ eventually visits only nodes of F∞, it follows that
Tf is finite. Hence, S is finite as well.

Now, assume that S is finite. Since T is non-blocking, there
must be a finite subtree Tf of T such that S ⊆ Tf \ L, where
L is the set of leaves of Tf . For each τ ∈ L, let πτ any

infinite path of T starting at node τ (since T is not-blocking
such a path πτ exists). Let F∞ be the infinite forest given by⋃

τ∈F πτ . Define T∞ ≜ Tf ∪ F∞ and Y∞ = (Tf \ S) ∪ F∞.
Evidently, Condition (∗) is fulfilled.

We can easily express in COWMSO that an infinite subset
of a not-blocking tree T is a tree (resp., a forest), and that an
infinite tree is finitely-branching. In particular, assuming that a
set variable Z is interpreted as an infinite tree T∞, the property
that T∞ is finitely-branching can be expressed in COWMSO
by the formula ¬∃x. ∃SX. [X ⊆ Z ∧ x ∈ X ∧ ∀y ∈ X. (y =
x ∨ child(x, y))]. Thus, by Lemma 5, we easily deduce that
both MSO and WMSO are subsumed by COWMSO.

Moreover, the class of infinitely-branching trees can be
captured in COWMSO by the formula ∃x. ∃XS. [x ∈ X∧∀y ∈
X. (y = x∨child(x, y))]. Hence, by Proposition 4, it follows
that COWMSO is in general more expressive than MSO.
However, in the finitely-branching setting, since the predicate
fin(X) is definable in MSO, we have MSO ≡ COWMSO.
Thus, being the density property definable both in MSO and
COWMSO but not in WMSO, we obtain the following result.

Theorem 6. MSO < COWMSO and WMSO < COWMSO.
In the finitely-branching setting, MSO ≡ COWMSO and
WMSO < COWMSO.

Now, let us consider the coWeak semantics variant of MTL.
We first show that both MTL and WMTL are subsumed by
COWMTL. In other terms, second-order quantification over
finite trees can be simulated in COWMTL. We exploit the
following characterisation of the finite subtrees of a given
not-blocking tree.

Lemma 6. Let T be a not-blocking tree and T ′ be a subtree
of T . Then, T ′ is finite iff the following condition holds: (∗)
there is a node τ ∈ T and an infinite tree T∞ ⊆ T such that:

• τ ∈ T∞ and T∞ is finitely-branching;
• each infinite path π of T∞ visits some strict descendant

of τ in T ;
• T ′ = T∞ \ {τ ′ ∈ T | τ < τ ′}.

Proof. Evidently, Condition (∗) entails that T ′ is finite. Vice
versa, assume that T ′ is finite, and let τ be any leaf node of
T ′. Since T is non-blocking, there exists an infinite path πτ of
T starting at node τ . Define T∞ ≜ T ′ ∪ πτ . It easily follows
that Condition (∗) is fulfilled.

By Lemma 6, we deduce the following result.

Proposition 5. MTL ≤ COWMTL and WMTL ≤ COWMTL.

The infinitely-branching property can be expressed in
COWMTL by the formula ∃x. ∃TX. [x ∈ X ∧ ∀y ∈ X. (y =
x ∨ child(x, y))]. Hence, by Propositions 4 and 5, it follows
that COWMTL is in general more expressive than MTL.
However, in the finitely-branching setting, assuming that X
is interpreted as a subtree of the given tree, the predicate
fin(X) can be defined in MTL. Hence, in this setting,
MTL ≡ COWMTL. Thus, being the density property definable
both in MTL (see Section III-B) and COWMTL (see the

proof of Theorem 4) but not in WMTL and WMSO, by
Proposition 2, we obtain the following result.

Theorem 7. MTL < COWMTL, WMTL < COWMTL,
MSO ̸∼ COWMTL, and WMSO ̸∼ COWMTL. In the
finitely-branching setting, MTL ≡ COWMTL, WMTL <
COWMTL, and WMSO ̸∼ COWMTL.

Additional expressiveness results. By the results established
so far, in order to have a complete picture about the ex-
pressiveness comparison between the considered logics, we
have to compare MPL with WMTL and WMSO. It is
known that in the finitely-branching setting, CTL* is not
subsumed by WMSO. This follows from [22], [23], [25],
where the authors prove that the formula E GF p cannot be
expressed in AFµ-CALCULUS, and [3], where it is shown
that AFµ-CALCULUS is equivalent to WMSO. Thus, being
CTL* ≤ MPL and WMTL ≤ WMSO, and since the
infinitely-branching property can be expressed in WMTL and
WMSO but not in MPL (Proposition 4), by Proposition 2, the
following holds.

Theorem 8. MPL ̸∼ WMTL and MPL ̸∼ WMSO. In
the finitely-branching setting, MPL ̸≤ WMTL and MPL ̸∼
WMSO.

It remains an open question whether in the finitely-branching
setting, WMTL is subsumed by MPL or not.

IV. CONNECTIONS WITH TEMPORAL LOGICS

The results in the previous section show that MTL is a
non-trivial fragment of MSO that strictly contains MPL. So
the question of its relationship with temporal logics becomes
worthy of investigation. To this end, we first identify a new
fragment of the Graded µ-CALCULUS (Gµ-CALCULUS) [34]
and its alternation-free variant (AFGµ-CALCULUS), whose
semantics can be encoded in MTL and WMTL, respectively. To
the best of our knowledge, this is the first non-trivial example
(i.e., not subsumed by other temporal formalisms) of modal
fixpoint logics, whose semantics does not require the full
power of set quantifications. We then present a translation of
Substructure Temporal Logic (STL*) [5], [6] into COWMTL,
which shows that the latter is powerful enough to reason
about games with FO-definable goals and to encode several
verification problems, such as reactive synthesis [45] and
module checking [35].

A. One-Step Graded µ-CALCULUS

As observed by Wolper [53], there are simple ω-regular
properties that cannot be expressed in classic temporal log-
ics, while they are easily expressible in Kozen’s Modal
µ-CALCULUS [33]. One of the simplest examples is the
existence of a path in a Kripke tree where a given atomic propo-
sition p holds true at all even positions along it: νX.(p∧♢♢X).
As we already observed in the Introduction, this formula is
witnessed by non-connected set of nodes and each witness
depends on the one two steps ahead in the path, due to
the double nesting of the modal operator ♢ preceding the

fixpoint variable. This contrasts with classic temporal logic
formulae, whose translation into the Modal µ-CALCULUS does
not require multiple nestings of the modal operators in front of
the fixpoint variables. For instance, the CTL formula E(p U q)
is equivalent to µX.(q ∨ (p ∧ ♢X)) and a single modality
separates the fixpoint operator from its variable.

On the basis of these observations, it seems natural to
conjecture that preventing multiple nestings of modalities
over fixpoint variables suffices to write formulae whose
dependent sets of witnesses are always connected to each
other, while the non-connected ones are independent from
one another. This “independence” property seems crucial for
the existence of an encoding into MTL, which can only
predicate over connected sets of nodes and, therefore, cannot
talk about non-connected sets. In the following, we prove this
conjecture, by first introducing the one-step fragment of Graded
µ-CALCULUS [34], an extension of the Modal µ-CALCULUS
with graded (i.e., counting) modalities [27], and then showing
a direct translation of its semantics into MTL.

Definition 3. The One-Step Fragment of Gµ-CALCULUS
(Gµ-CALCULUS[1S]) is the set of formulae built accordingly
to the following context-sensitive grammar, where Z,O ⊆ Vr2,
X ∈ Z, and p ∈ AP:

φZ,O := ⊥ | ⊤ | p | ¬φZ,O | φZ,O ∧ φZ,O | φZ,O ∨ φZ,O

| ♢≥k φO,∅ | □<k φO,∅ | X | ϑ∅,∅;
ϑZ,O := µX. ϑZ∪{X},O∪{X} | νX. ϑZ∪{X},O∪{X} | φZ,O.

ΦZ,O (resp., ΘZ,O) denotes the set of formulae described by the
first (resp., second) rule called base (resp., fixpoint) formulae,
where every occurrence of a variable is positive (i.e., within
the scope of an even number of negations). Formulae from
Φ∅,∅ and Θ∅,∅ are called sentences.

The two sets Z and O of fixpoint variables, called zero- and
one-step variables, respectively, identify the only free variables
that can occur in a Gµ-CALCULUS[1S] formula. Specifically,
the variables in Z can be used out of the scope of any modalities,
while those in O need to occur inside a single nesting of a
modality. No nesting of modalities is allowed before reaching
a fixpoint variable from the corresponding fixpoint operator.

Examples of Gµ-CALCULUS[1S] sentences are the encod-
ings µX. (q∨(p∧♢≥1X)) and νX. µY. (p∧♢≥1X)∨(♢≥1 Y)
of the CTL and CTL* state formulae E(p U q) and E GF p, re-
spectively. Another example of formula from the set Θ{Y },{Z}
is µX.(X∨Y)∨♢≥2(X∨Z∧□<1p). On the contrary, neither
♢≥1Y nor ♢≥1□≥1Z belong to Θ{Y },{Z}. In the first case,
indeed, Y is not a one-step variable, so it is not allowed in the
scope of a modality. It is still, however, a Gµ-CALCULUS[1S]
formula, since it belongs, e.g., to Θ∅,{Y }. The second formula,
instead, does not belong at all to the one-step fragment, since
the variable Z occurs in the scope of two nested modalities.

The semantics of Gµ-CALCULUS[1S] is completely stan-
dard (see, e.g., [34] for the full definition). Given a Kripke
tree T and a set of variables V, let AsgT (V) be the set of
assignments mapping each variable in V to some set of nodes of

T . For every Gµ-CALCULUS[1S] formula ϑ ∈ ΘZ,O, Kripke
tree T , and assignment χ ∈ AsgT (Z∪O) over the free variables
from Z ∪O, the denotation JϑKTχ is defined recursively on the
structure of ϑ. Here, we only report the cases for the counting
modalities and fixpoint operators, where post(w) denotes, as
usual, the set of children of the node w ∈ T:

• J♢≥k φKTχ ≜
{
w ∈ T

∣∣∣ |post(w) ∩ JφKTχ | ≥ k
}

;

• J□<k φKTχ ≜
{
w ∈ T

∣∣∣ |post(w) \ JφKTχ | < k
}

;

• JµX. ϑKTχ ≜
⋂{

W ⊆ T
∣∣∣ JϑKTχ[X 7→W] ⊆ W

}
;

• JνX. ϑKTχ ≜
⋃{

W ⊆ T
∣∣∣W ⊆ JϑKTχ[X 7→W]

}
.

The satisfaction relation T |= φ between a Kripke tree and
sentence holds when the root of T belongs to JφK.

Let us first observe that Gµ-CALCULUS[1S] is able to
express the density property of trees by means of the sentence

φDen ≜ νX. µY. (♢≥2X) ∨ (♢≥1 Y).

Indeed, if T |= φDen, the root of T belongs to the denotation
∆ ≜ JφDenKT∅. By the semantics of greatest-fixpoint, we
have JµY. (♢≥2X) ∨ (♢≥1 Y)KT{X 7→∆} = ∆, obtained by
evaluating the least-fixpoint subformula µY. (♢≥2X)∨(♢≥1 Y)
on the assignment mapping the variable X to the entire
denotation ∆ ⊆ T. This equality implies that every node
v in ∆ satisfies one of the following: (a) v has at least two
distinct children in ∆; (b) v is able to reach a node in ∆
that satisfies Property (a). Hence, ∆ precisely identifies the
set of nodes that form a subtree each of whose nodes has
two distinct strict descendants in ∆. Therefore, T enjoys the
density property. On the other hand, if T enjoys the density
property, there exists a set M ⊆ T of nodes corresponding to
an infinite binary-tree minor of T . Consider the denotation
∆′ ≜ JµY. (♢≥2X) ∨ (♢≥1 Y)KT{X 7→M} of least-fixpoint sub-
formula µY. (♢≥2X) ∨ (♢≥1 Y) of φDen for the assignment
mapping the greatest-fixpoint variable X to M. Due to the
definition of the set M, every node in it can reach at least two
distinct nodes in M as well. Thus, M ⊆ ∆′, which implies that
M ⊆ JφDenKT∅, by the semantics of greatest-fixpoint. Moreover,
the root of T belongs to ∆′, since it can reach any node in
M. Therefore, T |= φDen and we have the following result.

Theorem 9. The density property is expressible in
Gµ-CALCULUS[1S].

As an immediate corollary of Theorem 9, jointly with
Theorem 1 and the observation made in [10], [30] on the
inability of WMSO to characterise the class of dense trees,
we obtain the following expressiveness relation.

Corollary 4. Gµ-CALCULUS[1S] ̸≤ MPL and
Gµ-CALCULUS[1S] ̸≤ WMSO.

At this point, we can turn to the encoding of the semantics
of Gµ-CALCULUS[1S] formulae into MTL. With this aim
in mind, we first identify a one-step simulation property
enjoyed by the modal base underlying Gµ-CALCULUS[1S].
This property rests on an ordering relation on variable as-
signments called one-step simulation. Given two assignments

• trx(⊥)≜⊥;
• trx(⊤)≜⊤;

• trx(p)≜ Pp(x);
• trx(X)≜ x ∈ X;

• trx(¬φ)≜ ¬trx(φ);
• trx(φ1⊙φ2)≜trx(φ1)⊙ trx(φ2), ⊙ ∈ {∧,∨};

• trx(♢≥k φ)≜ ∃y1, . . . , yk. (
∧

i̸=j(yi ̸= yj)∧
∧k

i=1 child(x, yi)) ∧ (
∧k

i=1 tryi(φ));
• trx(□<k φ)≜ ∀y1, . . . , yk. (

∧
i ̸=j(yi ̸= yj)∧

∧k
i=1 child(x, yi))→(

∨k
i=1 tryi(φ));

• trx(µX. ϑ)≜ ¬trx(νX. pnf(¬ϑ[X/¬X]));
• trx(νX. ϑ)≜ ∃TX.x ∈ X ∧ ∀x ∈ X. trx(ϑ).

Table I: Translation function trx : ΘZ,O → MTL from Gµ-CALCULUS[1S] to MTL.

χ, χ′ ∈ Asg(Z ∪O), we state that χ is one-step simulated by
χ′ w.r.t. a set of nodes W ⊆ T, in symbols χ ⊑Z,O

W χ′, if

• χ(X) ∩W ⊆ χ′(X), for all X ∈ Z, and
• χ(X) ∩ post(W) ⊆ χ′(X), for all X ∈ O,

where post(W) denotes, as usual, the set of children in T
of the nodes in W. Essentially, χ′ assigns to any zero-step
variable at least as many elements of the context set W as χ
and assigns to any one-step variable all the children of nodes
in W that χ assigns. The informal reading of χ ⊑Z,O

W χ′ is
that χ′ contains as much information about W as χ, when the
visibility on W is limited to at most one step ahead.

We can now show that the semantics of the base fragment of
Gµ-CALCULUS[1S] is monotone w.r.t. the one-step simulation
relation relativised to the same set of nodes W. Informally, if
an assignment χ is simulated by another assignment χ′ w.r.t.
the set of nodes W, then every node from W that belongs to
the denotation of a base formula φ w.r.t. χ also belongs to the
denotation of φ w.r.t. χ′. Obviously, this property, ensured by
the syntactic restriction on the nesting of modal operators, is
enjoyed, e.g., by the one-step formulae ♢≥1X and □<3X , but
not by the non-one-step formulae ♢≥1♢≥2X and □<2♢≥1X .
The one-step monotonicity property is stated as follows and
can easily be proved by induction on the structure of the base
Gµ-CALCULUS[1S] formulae.

Lemma 7. For every base Gµ-CALCULUS[1S] formula
φ ∈ ΦZ,O, Kripke tree T , set of nodes W ⊆ T, and pair
of assignments χ, χ′ ∈ AsgT (Z ∪O) satisfying χ ⊑Z,O

W χ′, it
holds that JφKTχ ∩W ⊆ JφKTχ′ .

The monotonicity property is at the core of the “indepen-
dence” property of the semantics of all Gµ-CALCULUS[1S]
formulae mentioned above. Indeed, we show that every
maximal connected component ∆w of the denotation ∆≜JϑKTχ
w.r.t. an assignment χ of a formula ϑ rooted at some node
w ∈ ∆ (i.e., a maximal subtree rooted at w and fully contained
in ∆) can be also computed by using only the restriction to
∆w of the interpretation of the fixpoint variables. Essentially,
the fact that a node v of ∆w belongs to ∆ is independent of
whether any other node outside (the one-step extension of) ∆w

belongs to ∆ or not. In other words, disconnected parts of the
denotation cannot affect each other.

The maximal connected component of a given set of nodes
W ⊆ T rooted at a node w ∈ T can be defined as

W↓w ≜ {v ∈ W |w ≤ v ∧ ∀u ∈ T. (w ≤ u < v) ⇒ u ∈ W} ,

while the (Z,O)-restriction of an assignment χ ∈ AsgT (Z∪O)

to the (one-step extension of) W ⊆ T is defined as

(χ↾W)(X)≜

χ(X) ∩W, if X ∈ Z \O;

χ(X) ∩ post(W), if X ∈ O \ Z;
χ(X) ∩ (W ∪ post(W)), otherwise.

The “independence” property can be formalised as follows
and proved by induction on the nesting of fixpoint operators,
where the base case is proved by exploiting Lemma 7.

Lemma 8. For every fixpoint Gµ-CALCULUS[1S] formula
ϑ ∈ ΘZ,O, Kripke tree T , assignment χ ∈ AsgT (Z ∪O), and
node w ∈ ∆ ≜ JϑKTχ , it holds that ∆w ≜ ∆↓w = JϑKTχ′↓w,
where χ′ ≜ χ↾∆w

.

Table I reports a translation function tr : Vr1 → (ΘZ,O →
MTL) turning each Gµ-CALCULUS[1S] formula into an
equivalent MTL one. All cases, but those for the fixpoint
operators, are standard (see, e.g., [31]) and reported here just
for completeness. The real interesting case is the one for
the greatest-fixpoint formulae. The idea here is to exploit
the “independence” property stated above and reduce the
condition for a node w to belong to the greatest-fixpoint to
the condition that w belongs to a subtree which is also a post-
fixpoint. The translation of least-fixpoint formulae combines
the translation for the greatest-fixpoint with the well-known
µ-CALCULUS duality property µX. ϑ ≡ ¬νX.¬ϑ[X/¬X]
connecting the two fixpoint operators, where ϑ[X/¬X] denotes
the formula obtained by uniformly replacing each occurrence
of the variable X in ϑ with its negation ¬X . Note that,
since negations between fixpoint operators are not allowed
in Gµ-CALCULUS[1S], we transform the formula ¬ϑ[X/¬X]
into an equivalent one in positive normal form via the auxiliary
function pnf : Gµ-CALCULUS → Gµ-CALCULUS. In this
way, we ensure that, if ϑ is a Gµ-CALCULUS[1S] formula,
pnf(¬ϑ[X/¬X]) is a Gµ-CALCULUS[1S] formula as well.

At this point, the following result can be obtained via struc-
tural induction, by showing that, for every formula ϑ ∈ ΘZ,O,
Kripke tree T , assignment χ ∈ AsgT (Z∪O), and node w ∈ T,
it holds that w ∈ JϑKTχ iff T , {x 7→ w}, χ |= trx(ϑ).

Theorem 10. Gµ-CALCULUS[1S] ≤ MTL.

B. Alternation-Free One-Step Graded µ-CALCULUS

Alternation-Free Modal µ-CALCULUS (AFµ-CALCULUS),
namely the fragment of µ-CALCULUS where no alternation of
fixpoint operators is allowed, is a quite expressive, still much
easier, fragment of Modal µ-CALCULUS that can be encoded
in WMSO, when finitely-branching trees are considered [3],
[26], [14], [15]. Here we analyse the alternation-free fragment

• trx(νX. ϑ)≜

{
¬trx(µX. pnf(¬(ϑ[X/¬X][Y/¬Y]))), if ϑ ∈ ΦAF

Z′,O′ ;

trx(ϑ[X/Y]), otherwise;

• trx(µX. ϑ)≜

{
∃TX.x ∈ X ∧ ∀x ∈ X. ∃TY. mst(Y,X, x) ∧ trx(φ[X/Y]%Y), if ϑ ∈ ΦAF

Z′,O′ ;

trx(ϑ[X/Y]), otherwise;

where Z′ ≜ Z ∪ {Y,X}, O′ ≜ O ∪ {Y,X}, and mst(Y,X, x) ≜ ∀y. (y ∈ Y) ↔ (x ≤ y ∧ ∀z. (x ≤ z ≤ y) → z ∈ X), for some fresh
fixpoint variable Y ∈ Vr2 \ free(ϑ), where the two second-order existential quantifiers range over finite trees.

Table II: Translation function trx : Θ
AF
Z,O → WMTL from AFGµ-CALCULUS[1S] to WMTL, on finitely-branching trees.

of Gµ-CALCULUS[1S] (AFGµ-CALCULUS[1S]) and prove
that its semantics can be encoded in WMTL on the same
class of trees. Note that AFµ-CALCULUS is known to be
equivalent to WMSO. Hence, dropping the alternation-freeness
constraint from AFGµ-CALCULUS[1S] would immediately
lead us outside WMSO and, therefore, WMTL. We also look at
the expressive power of AFGµ-CALCULUS[1S] in comparison
with WMPL and a graded-on-path extension of CTL, showing
that this fragment is an interesting logic on its own.

Let ΘAF
Z,O and ΦAF

Z,O denote the subsets of ΘZ,O and ΦZ,O,
respectively, containing all and only alternation-free formulae.

It is immediate to see that the AFGµ-CALCULUS[1S]
sentence µX. a ∨ (□<1X) ∈ ΘAF

∅,∅, equivalent to the CTL
formula AF a, encodes the a-acceptance property.

Theorem 11. The a-acceptance property is expressible in
AFGµ-CALCULUS[1S].

As an immediate corollary of Theorems 11 and 3, we obtain
the following result.

Corollary 5. AFGµ-CALCULUS[1S] ̸≤ WMPL.

It is well-known that CTL is strictly subsumed by the
AFµ-CALCULUS [22], [18], thanks to the one-step unfolding
properties of the temporal operators U and R . Thus, obviously,
CTL < AFGµ-CALCULUS[1S] holds as well. We can show,
however, a stronger property. In [7], [8], [9], different counting
variants of CTL and CTL* than those considered in the
previous section have been proposed, called Graded CTL
(GCTL) and Graded CTL* (GCTL*), where classic path
quantifiers E and A are replaced with their graded versions E≥k

and A<k. These can be read informally as “there are at least
k paths” and “all but less than k paths”, respectively. Now,
Theorem 5.4 of [9] shows that GCTL can be encoded into
Gµ-CALCULUS via a generalisation of the classic one-step
unfolding properties. A closer inspection of the proof, though,
reveals that the translation only uses fixpoint variables within
the range of a single modal operators. Hence, the following
can be obtained.

Theorem 12. GCTL ≤ AFGµ-CALCULUS[1S].

To prove that AFGµ-CALCULUS[1S] ≤ WMTL on finitely-
branching trees, we first need to introduce some notation and
prove some auxiliary properties that hold true even for the full
Gµ-CALCULUS.

Given a Gµ-CALCULUS formula φ and a variable X ∈ Vr2,
we denote with φ%X and φ1X , called time-zero suppression, the
formulae obtained from φ by replacing each free occurrence
of X not in the scope of a modal operator with ⊥ and ⊤,

respectively. E.g., (µY. (p∨X)∧♢(X∨Y))%X = µY. (p∨⊥)∧
♢≥1(X∨Y) and (X∧µX. (p∨X)∧□<2X)1X = ⊤∧µX. (p∨
X)∧□<2X . Intuitively, the two time-zero suppressions ensure
that the membership of a node to the denotation of the resulting
formula does not depend on the interpretation of the specified
variable at “time-zero”.

Proposition 6. For every Gµ-CALCULUS formula φ, variable
X ∈ free(φ), Kripke tree T = (T,Lab), set of nodes W ⊆ T,
node w ∈ T, and assignment χ ∈ AsgT (free(φ)), the following
holds true:
a) Jφ%XKTχ ⊆ Jφ1XKTχ ;
b) JφKTχ = Jφ%X ∨ (X ∧ φ1X)KTχ ;
c) w ∈ Jφ%XKTχ[X 7→W] iff w ∈ Jφ%XKTχ[X 7→W\{w}];
d) w ∈ Jφ%XKTχ[X 7→W] iff w ∈ JφKTχ[X 7→W\{w}].

Items a-c of the above proposition can easily be obtained
by structural induction on the formula φ. In particular, Item a
is used in the proof of Item b (see [4, Lemma 9.1.1] for an
idea of proof), while Item d is an immediate consequence of
Items b and c. It may be interesting to observe that Item b
is a generalisation of Shannon’s lemma for Boolean function.
Moreover, Item c formally states that a node belongs to the
denotation of a formula with a variable X suppressed regardless
of its membership in the interpretation of that variable.

Essentially, the time-zero suppressions of a formula ϑ are
used in the following to make sure that the presence of a node
in the denotation of ϑ (typically, the argument of some fixpoint
operator) is granted solely by the presence of its descendants
and its inclusion in the assignment is indeed redundant. This
is crucial to prove the next result, where we characterise
the semantics of alternation-free least-fixpoint formulae, by
means of finite trees. Specifically, thanks to Kleene’s Theorem
and the fact that the underlying tree is finitely-branching, the
witness for the membership of a node to the denotation of
these formulae, once the fixpoint variable is suppressed, is
always finite. Moreover, Item d of Proposition 6 ensures that
such a witness is indeed a least fixpoint (and not an arbitrary
one), since a node belongs to the denotation independently of
its membership to the interpretation of the fixpoint variable.

Lemma 9. For every Gµ-CALCULUS[1S] formula ϑ =
µX1 . . . µXk. φ∈ΘZ,O, with φ∈ΦZ∪{X1,...,Xk},O∪{X1,...,Xk},
finitely-branching Kripke tree T = (T,Lab), node w ∈ T, and
assignment χ ∈ AsgT (Z ∪ O), the following properties are
equivalent:

• w ∈ JϑKTχ ;
• there exists a finite tree W ⊆ T with w ∈ W such that
v ∈ Jφ[X1/Y, . . . ,Xk/Y]%Y KT

χ[Y 7→W↓v], for all v ∈ W.

• trX,x(φ1Uϕφ2)≜ ∃TX ′. (nb(X ′) ∧X ′ ⊏X
ϕ X) ∧ (trX′,x(φ2) ∧ ∀TX ′′. (nb(X ′′) ∧X ′ ⊏X

ϕ X ′′ ⊏X
ϕ X) → trX′′,x(φ1));

• trX,x(φ1Rϕφ2)≜ ∀TX ′. (nb(X ′) ∧X ′ ⊏X
ϕ X) → (trX′,x(φ2) ∨ ∃TX ′′. (nb(X ′′) ∧X ′ ⊏X

ϕ X ′′ ⊏X
ϕ X) ∧ trX′′,x(φ1));

• trX,x(φ1Sϕφ2)≜ ∃TX ′. (nb(X ′) ∧X ⊏X
ϕ X ′) ∧ (trX′,x(φ2) ∧ ∀TX ′′. (nb(X ′′) ∧X ⊏X

ϕ X ′′ ⊏X
ϕ X ′) → trX′′,x(φ1));

• trX,x(φ1Bϕφ2)≜ ∀TX ′. (nb(X ′) ∧X ⊏X
ϕ X ′) → (trX′,x(φ2) ∨ ∃TX ′′. (nb(X ′′) ∧X ⊏X

ϕ X ′′ ⊏X
ϕ X ′) ∧ trX′′,x(φ1));

where nb(X)≜ ∀x∈X. ∃y∈X. child(x, y) and Y ⊏X
ϕ Z ≜ (Y ⊂Z) ∧ (∀y∈Y. ∀z∈Z. (trX,y(ϕ) ∧ child(y, z))→z∈Y).

Table III: Translation function trX,x : STL* → MTL from STL* to MTL.

Table II reports the two cases for which the translation func-
tion tr :Vr1→(ΘAF

Z,O→WMTL) from AFGµ-CALCULUS[1S]
into WMTL differs from the one for the general case. As
opposed to the original function, in this case it is the translation
of the greatest-fixpoint formulae that is derived from the
ones for the least-fixpoint via the duality property. The
translation for the latter is then obtained by simply encoding
the property stated in the above lemma, where we use the
auxiliary formula mst(Y,X, x) to identify the maximal subtree
Y fully included in the witness X and rooted at some given
node x. Note also that all least-fixpoint operators are merged
together and transformed as a monolithic entity, thanks to
the following classic equivalence (see, [4, Proposition 1.3.2]):
µX1 . . . µXk. φ ≡ µY. φ[X1/Y, . . . ,Xk/Y]. The expressive-
ness result reported below is obtained by exploiting the same
line of reasoning used for the proof of Theorem 10.

Theorem 13. AFGµ-CALCULUS[1S] ≤ WMTL on finitely-
branching trees.

C. Substructure Temporal Logic

In [5], [6], an extension of CTL*, called Substructure
Temporal Logic (STL*), is proposed, with the distinctive
feature of being able to implicitly predicate over non-blocking
substructures of the underlying Kripke model. When such
models are trees, this reduces to reasoning about subtrees. The
logic is obtained by adding four (future and past) temporal-like
operators U (until), R (release), S (since), and B (before), called
semilattice operators, whose interpretation is given relative to
the join semilattice induced by the partial order on subtrees.

For the sake of space, here we only recall the semantics of
the until formulae φ1Uϕφ2, which is given for a fixed Kripke-
tree model T ∗ and one of its non-blocking subtrees T . The
satisfaction relation T |=T

∗
φ1Uϕφ2 holds if there exists a non-

blocking ϕ-preserving strict subtree T ′ of T such that T ′ |=T
∗
φ2

and, for all non-blocking ϕ-preserving trees T ′′ strictly lying
between T ′ and T , it holds that T ′′ |=T

∗
φ1. Here, ϕ-preserving

means that all the children in T of the nodes in T ′ that satisfy
the formula ϕ are kept in T ′ as well.

Table III reports the translation function tr : Vr2 × Vr1→
(STL* → MTL) from STL* into MTL that encodes the
semantics of the four semilattice operators. The formula
nb(X) encodes the non-blocking property for the tree X ,
while Y ⊏X

ϕ Z encodes the ϕ-preserving subtree relation. The
encoding of the remaining part of the logic, which corresponds
to CTL*, is the same as the one into MPL proposed in [29]
and is not reported here. The comparison between STL* and
MPL was left open in [6]. Thanks again to Theorem 1 and

the fact that STL* can express the density property [6], the
following theorem answers that question.

Theorem 14. STL* ≤ MTL and STL* ̸≤ MPL.

Section 5 of [6] carries out an analysis of several problems
involving reasoning about games. There it is shown that STL*
can encode LTL reactive synthesis [45], CTL* module check-
ing [35], and the solution of turn-based/concurrent zero/non-
zero-sum games with LTL, hence FO-definable, goals. Thanks
to the above theorem, the same abilities are inherited by MTL.

V. DISCUSSION

We have introduced and studied MTL, a variant of MSO
over non-blocking trees, where the domain of the second-order
variables is restricted to subtrees of the original structure. An
extensive comparison of the expressive power of MTL, and
its finite (WMTL) and co-finite (COWMTL) variants against
the corresponding variants of MSO and MPL has also been
provided. Unlike MSO, which can quantify over non-connected
sets of nodes, MTL, much like MPL, is designed to predicate
over connected sets of nodes only. As a consequence, while
the result that MSO (resp., WMSO, COWMSO) is strictly
more expressive than MTL (resp., WMTL, COWMTL) may
be not surprising and somewhat expected, far less obvious is
the result that the same relationship holds between MTL and
MPL. As we have shown, this essentially follows from the
ability of MTL to express meaningful properties of trees, such
as the density property stipulating that the set of paths of the
underlying tree is uncountable or, equivalently, that the tree
contains a full binary tree as a minor, which cannot be captured
by means of path quantifications only.

These results call for a deeper investigation of the relation-
ships between MTL and temporal logics. Here we have begun
this analysis by showing that STL*, an expressive temporal
logic able to capture reasoning about strategies and games
in a quite general way, can easily be embedded into MTL.
This suggests that MTL is indeed enough for reasoning about
games with FO-definable goals. A deeper result, though, is
obtained by identifying the one-step fragment of the Graded
µ-CALCULUS that restricts free variables to occur within the
scope of at most a single modal operator. Such a restriction, in
turn, essentially prevents the formulae of this language from
being able to predicate over non-connected sets. We show, in
fact, that this fragment is contained in MTL but cannot be
captured by MPL, as it can still express the density property.
This study can be viewed as a contribution of interest on its
own, since the Modal µ-CALCULUS, although often considered
an unfriendly assembly-like specification language, is very
important from a practical viewpoint. Symbolic model-checking

tools, indeed, exist that compute the denotation of fixpoint
expressions over the set of states of the model to verify, see,
e.g., [18].

In addition to the question still open of whether WMTL
is subsumed by MPL on finitely-branching trees, the most
relevant problem still to address is the completeness w.r.t.
MTL and WMTL of the two one-step fragments (or slight
generalisations thereof) of the Gµ-CALCULUS. Particular care
will be required for the treatment of the alternation-free
fragment on arbitrary-branching trees, where the corresponding
fragment of MTL would conceivably not be WMTL but a
Noetherian variant [15] of MTL.

REFERENCES

[1] R. Alur, T. Henzinger, and O. Kupferman, “Alternating-Time Temporal
Logic,” in FOCS’97. IEEECS, 1997, pp. 100–109.

[2] ——, “Alternating-Time Temporal Logic,” JACM, vol. 49, no. 5, pp.
672–713, 2002.

[3] A. Arnold and D. Niwinski, “Fixed Point Characterization of Weak
Monadic Logic Definable Sets of Trees,” in Tree Automata and Languages.
North-Holland, 1992, pp. 159–188.

[4] ——, Rudiments of µ-Calculus, ser. Studies in Logic and the Foundations
of Mathematics. North-Holland, 2001.

[5] M. Benerecetti, F. Mogavero, and A. Murano, “Substructure Temporal
Logic,” in LICS’13. IEEECS, 2013, pp. 368–377.

[6] ——, “Reasoning About Substructures and Games,” TOCL, vol. 16, no. 3,
pp. 25:1–46, 2015.

[7] A. Bianco, F. Mogavero, and A. Murano, “Graded Computation Tree
Logic,” in LICS’09. IEEECS, 2009, pp. 342–351.

[8] ——, “Graded Computation Tree Logic with Binary Coding,” in CSL’10,
ser. LNCS 6247. Springer, 2010, pp. 125–139.

[9] ——, “Graded Computation Tree Logic,” TOCL, vol. 13, no. 3, pp.
25:1–53, 2012.

[10] M. Bojańczyk, T. Idziaszek, and M. Skrzypczak, “Regular Languages
of Thin Trees,” in STACS’13, ser. LIPIcs 20. Leibniz-Zentrum fuer
Informatik, 2013, pp. 562–573.

[11] J. Büchi, “Weak Second-Order Arithmetic and Finite Automata,” MLQ,
vol. 6, no. 1-6, pp. 66–92, 1960.

[12] ——, “On a Decision Method in Restricted Second-Order Arithmetic,”
in ICLMPS’62. Stanford University Press, 1962, pp. 1–11.

[13] ——, “On a Decision Method in Restricted Second Order Arithmetic,”
in Studies in Logic and the Foundations of Mathematics. Elsevier, 1966,
vol. 44, pp. 1–11.

[14] F. Carreiro, A. Facchini, Y. Venema, and F. Zanasi, “Weak MSO:
Automata and Expressiveness Modulo Bisimilarity,” in CSL’14 &
LICS’14. ACM, 2014, pp. 27:1–27.

[15] ——, “The Power of the Weak,” TOCL, vol. 21, no. 2, pp. 15:1–47,
2020.

[16] K. Chatterjee, T. Henzinger, and N. Piterman, “Strategy Logic,” in
CONCUR’07, ser. LNCS 4703. Springer, 2007, pp. 59–73.

[17] ——, “Strategy Logic,” IC, vol. 208, no. 6, pp. 677–693, 2010.
[18] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,

2002.
[19] B. Courcelle, “The Monadic Second-Order Logic of Graphs, II: Infinite

Graphs of Bounded Width,” MST, vol. 21, no. 4, pp. 187–221, 1989.
[20] ——, “The Monadic Second-Order Logic of Graphs. I. Recognizable

Sets of Finite Graphs,” IC, vol. 85, no. 1, pp. 12–75, 1990.
[21] ——, “The Monadic Second-Order Logic of Graphs III: Tree-

Decompositions, Minor and Complexity Issues,” RAIROTIA, vol. 26,
no. 3, pp. 257–286, 1992.

[22] E. Emerson, “Model Checking and the Mu-calculus,” in DCFM’96, ser.
DIMACS’31. AMS, 1996, pp. 185–214.

[23] E. Emerson and E. Clarke, “Characterizing Correctness Properties
of Parallel Programs Using Fixpoints,” in ICALP’80, ser. LNCS 85.
Springer, 1980, pp. 169–181.

[24] E. Emerson and J. Halpern, ““Sometimes” and “Not Never” Revisited:
On Branching Versus Linear Time,” JACM, vol. 33, no. 1, pp. 151–178,
1986.

[25] E. Emerson and C.-L. Lei, “Efficient Model Checking in Fragments
of the Propositional muCalculus,” in LICS’86. IEEECS, 1986, pp.
267–278.

[26] A. Facchini, Y. Venema, and F. Zanasi, “A Characterization Theorem for
the Alternation-Free Fragment of the Modal µ-Calculus,” in LICS’13.
IEEECS, 2013, pp. 478–487.

[27] K. Fine, “In So Many Possible Worlds,” NDJFL, vol. 13, pp. 516–520,
1972.

[28] Y. Gurevich and S. Shelah, “The Decision Problem for Branching Time
Logic,” JSL, vol. 50, no. 3, pp. 668–681, 1985.

[29] T. Hafer and W. Thomas, “Computation Tree Logic CTL* and Path
Quantifiers in the Monadic Theory of the Binary Tree,” in ICALP’87,
ser. LNCS 267. Springer, 1987, pp. 269–279.

[30] T. Idziaszek, M. Skrzypczak, and M. Bojańczyk, “Regular Languages of
Thin Trees,” TCS, vol. 58, no. 4, pp. 614–663, 2016.

[31] D. Janin and G. Lenzi, “On the Relationship Between Monadic and Weak
Monadic Second Order Logic on Arbitrary Trees, with Applications to
the mu-Calculus,” FI, vol. 61, no. 3-4, pp. 247–265, 2004.

[32] D. Janin and I. Walukiewicz, “On the Expressive Completeness of the
Propositional mu-Calculus with Respect to Monadic Second Order Logic,”
in CONCUR’96, ser. LNCS 1119. Springer, 1996, pp. 263–277.

[33] D. Kozen, “Results on the Propositional muCalculus,” TCS, vol. 27,
no. 3, pp. 333–354, 1983.

[34] O. Kupferman, U. Sattler, and M. Vardi, “The Complexity of the Graded
muCalculus,” in CADE’02, ser. LNCS 2392. Springer, 2002, pp. 423–
437.

[35] O. Kupferman, M. Vardi, and P. Wolper, “Module Checking,” IC, vol.
164, no. 2, pp. 322–344, 2001.

[36] F. Mogavero, A. Murano, G. Perelli, and M. Vardi, “Reasoning About
Strategies: On the Model-Checking Problem,” TOCL, vol. 15, no. 4, pp.
34:1–42, 2014.

[37] ——, “Reasoning About Strategies: On the Satisfiability Problem,” LMCS,
vol. 13, no. 1:9, pp. 1–37, 2017.

[38] F. Mogavero, A. Murano, and M. Vardi, “Reasoning About Strategies,”
in FSTTCS’10, ser. LIPIcs 8. Leibniz-Zentrum fuer Informatik, 2010,
pp. 133–144.

[39] F. Moller and A. Rabinovich, “On the Expressive Power of CTL*,” in
LICS’99. IEEECS, 1999, pp. 360–368.

[40] ——, “Counting on CTL*: On the Expressive Power of Monadic Path
Logic,” IC, vol. 184, no. 1, pp. 147–159, 2003.

[41] D. Muller, A. Saoudi, and P. Schupp, “Alternating Automata, the Weak
Monadic Theory of Trees and its Complexity,” in ICALP’86, ser. LNCS
226. Springer, 1984, pp. 275–283.

[42] ——, “Alternating Automata, the Weak Monadic Theory of Trees and
its Complexity,” TCS, vol. 97, no. 2, pp. 233–244, 1992.

[43] D. Muller and P. Schupp, “Pushdown Automata, Graphs, Ends, Second-
Order Logic, and Reachability Problems,” in STOC’81. ACM, 1981,
pp. 46–54.

[44] ——, “The Theory of Ends, Pushdown Automata, and Second-Order
Logic,” TCS, vol. 37, pp. 51–75, 1985.

[45] A. Pnueli and R. Rosner, “On the Synthesis of a Reactive Module,” in
POPL’89. ACM, 1989, pp. 179–190.

[46] M. Rabin, “Decidability of Second-Order Theories and Automata on
Infinite Trees,” TAMS, vol. 141, pp. 1–35, 1969.

[47] ——, “Weakly Definable Relations and Special Automata,” in Studies
in Logic and the Foundations of Mathematics. Elsevier, 1970, vol. 59,
pp. 1–23.

[48] M. Rabin and D. Scott, “Finite Automata and their Decision Problems,”
IBMJRD, vol. 3, pp. 115–125, 1959.

[49] B. ten Cate and A. Facchini, “Characterizing EF over Infinite Trees
and Modal Logic on Transitive Graphs,” in MFCS’11, ser. LNCS 6907.
Springer, 2011, pp. 290–302.

[50] W. Thomas, “On Chain Logic, Path Logic, and First-Order Logic over
Infinite Trees,” in LICS’87. IEEECS, 1987, pp. 245–256.

[51] I. Walukiewicz, “Monadic Second Order Logic on Tree-Like Structures,”
in STACS’96, ser. LNCS 1046. Springer, 1996, pp. 401–413.

[52] ——, “Pushdown Processes: Games and Model-Checking,” IC, vol. 164,
no. 2, pp. 234–263, 2001.

[53] P. Wolper, “Temporal Logic Can Be More Expressive,” IC, vol. 56, no.
1-2, pp. 72–99, 1983.

	Introduction
	Background
	Monadic Tree Logic
	Monadic Second-Order Logics
	Expressiveness under Full Quantifications
	Expressiveness under Weak Quantifications
	Expressiveness under coWeak Quantifications
	Weak Quantifications versus coWeak Quantifications

	Connections with Temporal Logics
	One-Step Graded -Calculus
	Alternation-Free One-Step Graded -Calculus
	Substructure Temporal Logic

	Discussion
	References

